Preview

Chebyshevskii Sbornik

Advanced search

Generalized Dirichlet problem for a two-dimensional lattice of Dirichlet approximations

https://doi.org/10.22405/2226-8383-2022-23-1-83-105

Abstract

The paper studies the relationship between the problem of determining the number of points of a two-dimensional lattice of Dirichlet approximations in a hyperbolic cross and the integral representation of the hyperbolic zeta function of a two-dimensional lattice of Dirichlet approximations. The concept of components of hyperbolic zeta-functions of a twodimensional lattice of Dirichlet approximations is introduced. A representation is found for the first component of the hyperbolic zeta function of a two-dimensional lattice of Dirichlet
approximations via the Riemann zeta function. With respect to the first component, the paradoxical fact is established that it is continuous for any irrational 𝛽 and discontinuous at all rational points of 𝛽. This refers to the dependency only on the 𝛽 parameter.
For the second component of the hyperbolic zeta-function of the two-dimensional lattice of Dirichlet approximations in the case of a rational value 𝛽 = 𝑎
𝑏 , an asymptotic formula is obtained for the number of points of the second component of the two-dimensional lattice of Dirichlet approximations in the hyperbolic cross. The resulting formula gives an integral representation
in the half-plane 𝜎 > 1/2 .

The main research tool was the Euler summation formula. For the purposes of the work, it was necessary to obtain explicit expressions of the residual terms in asymptotic formulas for the number of points of residue classes of a two-dimensional lattice of Dirichlet approximations over a stretched fundamental lattice 𝑏Z×Z. Both Theorem 1 and Theorem 2, proved in the paper, show the dependence of the second term of the asymptotic formula and the deduction of
the hyperbolic zeta function of the lattice Λ(︀𝑎/𝑏)︀ depends on the magnitude of the denominator 𝑏 and independence from the numerator 𝑎. Earlier, similar effects were discovered by A. L. Roscheney for other generalizations of the Dirichlet problem.
The paper sets the task of clarifying the order of the residual term in asymptotic formulas by studying the quantities

$$𝑅*1(𝑇, 𝑏, 𝛿) =(√𝑇)/bΣ︁𝑞=1{︂𝑇/𝑏𝑞− 𝛿}︂−(√𝑇)/2𝑏, 𝑅*2(𝑇, 𝑏, 𝛿) =√𝑇−𝛿Σ︁𝑝=1{︂𝑇/(𝑏𝑝 + 𝑏𝛿)}︂−(√𝑇)/2.$$

It is proposed to first study the possibilities of the elementary method of I. M. Vinogradov,
and then to obtain the most accurate estimates using the method of trigonometric sums. The
paper outlines the directions of further research on this topic.

About the Authors

Nikolai Nikolaevich Dobrovol’skii
Tula State Pedagogical University; Tula State University
Russian Federation

candidate of physical and mathematical sciences



Mikhail Nikolaevich Dobrovol’skii
Geophysical centre of RAS
Russian Federation

candidate of physical and mathematical sciences



Vladimir Nikolaevich Chubarikov
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



Irina Yuryevna Rebrova
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences, associate professor




Nikolai Mihailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. I. M. Vinogradov, 1917, “A new method for obtaining asymptotic expressions of arithmetic functions”, Izvestia Akademii Nauk, 11:16 , 1347–1378.

2. I. M. Vinogradov, 1952, “Fundamentals of number theory”. — M.-L., Gostekhizdat, 180 p.

3. A. O. Gelfond, 1967, “Calculus of finite differences”. — М., 378 p.

4. A. O. Gelfond, Yu. V. Linnik, 1962, “Elementary methods in analytical number theory”. — M., Fizmatgiz, 272 p.

5. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2012, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, vol. 13, no. 4(44), pp. 4–107.

6. Dobrovol’skii, M. N. 2006, “Dirichlet series with periodic coefficients and a functional equation for hyperbolic dzeta-function of integer lattices”, Chebyshevskij sbornik, vol. 3, no. 2(4), pp. 43–59.

7. Dobrovol’skii, M. N. 2007, “Functional equation for hyperbolic dzeta-function of integer lattices”, Doklady akademii nauk, vol. 412, no. 3, pp. 302–304.

8. Dobrovol’skii, M. N. 2007, “Functional equation for hyperbolic dzeta-function of integer lattices”, Vestnik Moskovskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Mekhanika, no. 3, pp. 18–23.

9. M. N. Dobrovol’skii, N. N. Dobrovol’skii, N. M. Dobrovol’skii, 2021, "About one functional equation" , Chebyshevskii sbornik, vol. 22, no. 5, pp. 359–364.

10. Dobrovol’skii, N. M., Dobrovol’skii, N. N., Sobolev, D.K., Soboleva, V.N., Dobrovol’skaya, L. P. & Bocharova, O. E. 2016, “On the hyperbolic Hurwitz Zeta function ”, Chebyshevskij sbornik, vol. 17, no. 3, pp. 72–105.

11. N. M. Dobrovol’skii, A. L. Roshchenya, 1996, “On the continuity of the hyperbolic zeta function of lattices”, Izvestiya Tula State University. — Tula, Vol. 2, issue. 1. P. 77–87.

12. N. M. Dobrovol’skii, A. L. Roshchenya, 1996, “On the analytic continuation of the hyperbolic zeta function of rational lattices”, Abstracts of the III International Conference "Modern problems of number theory and its applications" . — Tula. P. 49.

13. N. M. Dobrovol’skii, A. L. Roshchenya, 1998, “Number of lattice points in the hyperbolic cross”, Math. Notes, 63:3, P. 319–324.

14. N. M. Dobrovolsky, A. L. Roschenya, I. Y. Rebrova, 1998, “Continuity of the hyperbolic zeta function of lattices” // Math. notes, Vol. 63, issue 4, pp. 522–526.

15. A. A. Karatsuba, 1983, Fundamentals of analytical number theory. — Moscow.

16. A. L. Roshchenya, 1996, “Generalization of Dirichlet’s theorem on the number of points of an integer lattice in a hyperbolic cross” // Modern problems of number theory and its applications: Tez. dokl. III International Conf. Tula, p. 120.

17. A. L. Roshchenya, 1996, “Generalization of Dirichlet’s theorem on the number of points of a shifted lattice under the hyperbola 𝑥 · 𝑦 = 𝑁”, Tula, Dep. in VINITI. № 2743-№ -96.

18. A. L. Roshchenya, 1997, “Generalization of Dirichlet’s theorem on the number of points of an integer lattice in a hyperbolic cross”, Tula, Dep. in VINITI. № 2087-№ -97.

19. A. L. Roshchenya, 1998, “Analytical continuation of the hyperbolic zeta function of lattices” / Dissertation of the Candidate of Physical and Mathematical Sciences. Moscow. MPGU.

20. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2014, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, vol. 211, pp. 23–62. doi: 10.1007/978-3-319-03146-0_2.


Review

For citations:


Dobrovol’skii N.N., Dobrovol’skii M.N., Chubarikov V.N., Rebrova I.Yu., Dobrovol’skii N.M. Generalized Dirichlet problem for a two-dimensional lattice of Dirichlet approximations. Chebyshevskii Sbornik. 2022;23(1):83-105. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-83-105

Views: 368


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)