Preview

Chebyshevskii Sbornik

Advanced search

On construction of multidimensional periodic wavelet frames

https://doi.org/10.22405/2226-8383-2022-23-1-21-32

Abstract

Multidimensional periodic wavelet systems with matrix dilation in the framework of periodic multiresolution analyses are studied. In this work we use notion of a periodic multiresolution analysis, the most general definition of which was given by Maksimenko and M. Skopina in [25].
An algorithmic method of constructing multidimensional periodic dual wavelet frames from a suitable set of Fourier coefficients of one function is provided. This function is used as the first function in a scaling sequence that forms two periodic multiresolution analyses, which are used to construct wavelet systems. Conditions that the initial function has to satisfy are presented in terms of a certain rate of decay of its Fourier coefficients, and also mutual arrangement of zero and non-zero coefficients.

About the Author

Andrianov Pavel Andreevich
Saint Petersburg State University
Russian Federation


References

1. P. A. Andrianov, “Sufficient conditions for a multidimensional system of periodic wavelets to be a frame“, Zap. Nauchn. Sem. POMI (Russian), 2019, Volume 480, 48–61.

2. N. D. Atreas, 2002, “Characterization of dual multiwavelet frames of periodic functions“, International Journal of Wavelets, Multiresolution and Information Processing, Vol. 14, No. 03, 1650012.

3. C. K. Chui, H. N. Mhaskar, 1993, “On trigonometric wavelets“, Constr. Approx., 9, 2-3, 167-190.

4. C. K. Chui, J. Z.Wang, 1992, “A general framework of compact supported splines and wavelets“, J. Approx. Theory 71, 263-304.

5. I. Daubechies, B. Han, A. Ron, Z. Shen, 2003, “Framelets: MRA-based constructions of wavelet frames“, ACHA, Volume 14, Issue 1 Pages 1-46.

6. I. Daubechies, 1992, “Ten lectures on Wavelets“, CBMS-NSR Series in Appl. Math., SIAM.

7. S. S. Goh, B. Han, Z. Shen, 2011, “Tight periodic wavelet frames and approximation orders“, ACHA, Volume 31, Issue 2, Pages 228-248.

8. S. S. Gon, S. Z. Lee, Z. Shen, W. S. Tang, 1998, “Construction of Schauder decomposition on banach spaces of periodic functions“, Proceedings of the Edinburgh Mathematical Society, Volume 41, Issue 1, pp. 61-91.

9. B. Han, 1997, “On dual wavelet tight frames“, ACHA, V. 4. P. 380-413.

10. B. Han, 2003, “Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix“, J. Comput. Appl. Math., Vol. 155. P. 43- 67.

11. A. Krivoshein, V. Protasov, M. Skopina, 2016, “Multivariate Wavelet Frames“, Springer Singapore, P. 182.

12. E. Lebedeva, 2017, “On a connection between nonstationary and periodic wavelets“, J. Math. Anal. Appl., 451:1, 434–447

13. Y. Meyer, 1990, “Ondelettes“, Herman, Paris.

14. A. P. Petukhov, 1997, “Periodic wavelets“, Mat. Sb., 188:10, 69–94.

15. A. Ron, Z. Shen, 1995, “Gramian analysis of affine bases and affine frames“, Approximation Theory VIII, V. 2: Wavelets (C.K. Chui and L. Schumaker, eds), World Scientific Publishing Co. Inc (Singapore). P. 375-382.

16. A. Ron, Z. Shen, 1995, “Frame and stable bases for shift-invariant subspaces of L2(Rd)“, Canad. J. Math., V. 47. N. 5. P. 1051-1094.

17. A. Ron, Z. Shen, 1997, “Affine systems in L2(Rd): the analysis of the analysis operator“, J. Func. Anal., V. 148. P. 408-447.

18. A. Ron, Z. Shen, 1997, “Affine systems in L2(Rd): dual systems“, J. Fourier. Anal. Appl., V. 3. P. 617-637.

19. M. Skopina, 1998, “Local convergence of Fourier series with respect to periodized wavelets“, J. Approx. Theory., V. 94. P. 191-202.

20. M. Skopina, 2000, “Wavelet approximation of periodic functions“, J. Approx. Theory., V. 104. P.302-329.

21. M. Skopina, 1997, “Multiresolution analysis of periodic functions“, East Journal On Approximations, Volume 3, Number 2, 203-224.

22. G. G.Walter, L. Cai., 1999 “PeriodicWavelets from Scratch“, Journal of Computational Analysis and Applications, Volume 1, Issue 1, pp 25-41.

23. V. A. Zheludev, 1994, “Periodic splines and wavelets“, Proc. of the Conference "Math. Analysis and Signal Processing", Cairo, Jan. 2-9, 1994.

24. Novikov, I. Y., Protasov, V. Y., Skopina, M. A., 2011, “Wavelet Theory“, American Mathematical Society.

25. I. Maksimenko, M. Skopina, 2004, “ Multivariate periodic wavelets“, St. Petersburg Math. J., 15, 165-190.


Review

For citations:


Andreevich A.P. On construction of multidimensional periodic wavelet frames. Chebyshevskii Sbornik. 2022;23(1):21-32. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-21-32

Views: 299


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)