Preview

Chebyshevskii Sbornik

Advanced search

Transformations of metrics that preserve the geometric characteristics of finite metric spaces

https://doi.org/10.22405/2226-8383-2021-22-5-138-160

Abstract

Given a class $F$ of metric spaces and a family of transformations $T$ of a metric, one has to describe a family of transformations $ T'\subset T$ that transfer $F$ into itself and preserve some types of minimal fillings. % We denote  $\rho_{ij}=\rho(p_i,p_j)$ and\\ $\r=(\rho_{12}, \rho_{13}, \ldots, \rho_{n-1,n})$ for any metric space $(M,\r)$ where $M=\{p_1,\ldots,p_n\}$.
%We considered the case
The article considers two cases.
%\iffalse
%\begin{itemize}
    %\item
    First, when $F$ is the class of all finite pseudometric spaces, the class $T$ consists of the maps $M\mapsto AM+\tau$, where the matrices $A$ and $\tau$ define the mapping of pseudometric matrix $M$, and the elements of $T'$ preserve any type $G$ of minimal fillings of pseudometric spaces whose points correspond to vertices of degree 1 of the graph G, and we prove that $A=\lambda E$ for some $\lambda\ge 0$, and $\tau$ is a pseudometric matrix, one of the minimal fillings of which is a star.
    Second when $F$ is the class of all finite pseudometric spaces, the class $T$ consists of the maps $\r\to A\r$, where $A$ is a diagonalizable matrix with two eigenvalues $\lambda_{max}> \lambda_{min} \ge 0$, the largest eigenvalue $\lambda_{max}$ of which has multiplicity 1, the eigenspace corresponding to the value $ \lambda_{min} $, does not contain nonzero pseudometrics, and the elements of $T'$ preserve the types $G$ of minimal fillings of the pseudometric space, whose points correspond to vertices of degree $1$ of graphs $G$. And we prove that for any mapping matrix from $T'$ there is a pseudometrics that is an eigenvector with the eigenvalue $\lambda_{max}$, among the minimum fillings of which there is a filling of the star type.
    Second, when $F$ is the class of all finite metric spaces, the class $T$ consists of the maps $\r\to N\r$, where the matrix $N$ is the sum of a positive diagonal matrix $A$ and a matrix with the same rows of non-negative elements. The elements of $T'$ preserve all minimal fillings of the type of non-degenerate stars. %we proved
    It has been proven that $T'$ consists of maps $\r\to N\r$, where $A$ is scalar. %;
    Third, when $F$ is the class of all finite additive metric spaces, $T$ is the class of all linear mappings given by matrices, and the elements of $T'$ preserve all non-degenerate types of minimal fillings, and we proved that for metric spaces consisting of at least four points $T'$  is the set of transformations given by scalar matrices. %;
    Fourth, when $F$ is the class of all finite ultrametric spaces, $T$ is the class of all linear mappings given by matrices, and we proved that for three-point spaces the matrices have the form $A=R(B+\lambda E)$, where $B$ is a matrix of identical rows of positive elements, and $R$ is a permutation of the points $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$.

About the Author

Stepan Yur’evich Lipatov
Lomonosov Moscow State University
Russian Federation


References

1. Banks, W. D., Conflitti, A. & Shparlinski, I. E. 2002, “Character sums over integers with

2. restricted 𝑔-ary digits“, Illinois J. Math., vol. 46, no. 3, pp. 819-836.

3. A. O. Ivanov, A. A. Tuzhilin. 2012, “One-Dimensional Gromov Minimal Filling Problem,”

4. Matem. Sbornik, 203 (5), 65 (2012) [Sbornik: Math., 203 (5), 677 (2012)].

5. A. O. Ivanov, A. A. Tuzhilin, 2003, Extreme Networks Theory (IKI, Izhevsk, [in Russian]).

6. Ivanov A.O., Tuzhilin A.A. 1994, Minimal Networks. Steiner Problem and Its Generalizations.

7. CRC Press

8. S. Yu. Lipatov, 2015, “The functions that do not change types of minimal fillings”, Vestnik

9. Moskov. Univ. Ser. 1. Mat. Mekh., no. 6, 42–45; Moscow University Mathematics Bulletin, 70:6

10. (2015), 267–269

11. S. Yu Lipatov, 2019. “Metrics transformations preserving the types of one-dimensional minimal

12. fillings”. Filomat, 33(4):1081–1089.

13. O. V. Rubleva, 2012. “The Additivity Criterion for Finite Metric Spaces and Minimal Fillings,”

14. Vestnik Mosk. Un-ta, Matem., Mekh., № 2, 8 (2012) [Moscow Univ. Math. Bull., 67 (2), 52

15. (2012)].

16. Z. N. Ovsyannikov, 2013. “An Open Family of Sets That Have Several Minimal Fillings,”

17. Fundam. i Prikl. Matem., 18 (2), 153 (2013) [J. of Math. Sci., 203 (6), 855 (2014)].

18. I. L. Laut, Z. N. Ovsyannikov, 2013. “The Type of Minimal Branching Geodesics Defines the

19. Norm in a Normed Space,” Fundam. i Prikl. Matem., 18 (2), 67 (2013) [J. of Math. Sci., 203

20. (6), 799 (2014)].

21. V. A. Mishchenko, 2013. “Estimates for the Steiner-Gromov Ratio of Riemannian Manifolds,”

22. Fundam. i Prikl. Matem., 18 (2), 119 (2013) [J. of Math. Sci., 203 (6), 833 (2014)].

23. Z. N. Ovsyannikov, 2013. “The Steiner and Gromov-Steiner Ratios and Steiner Subratio in the

24. Space of Compacta in the Euclidean Plane with Hausdorff Distance,” Fundam. i Prikl. Matem.,

25. (2), 157 (2013) [J. of Math. Sci., 203 (6), 858 (2014)].

26. Z. N. Ovsyannikov, 2013. “The Steiner Subratio of Five Points on a Plane and Four Points in

27. Three-Dimensional Space,” Fundam. i Prikl. Matem., 18 (2), 167 (2013) [J. of Math. Sci., 203

28. (6), 864 (2014)].

29. A. S. Pakhomova, 2014. “A Continuity Criterion for Steiner-Type Ratios in the Gromov–

30. Hausdorff Space,” Matem. Zametki, 96 (1), 126 (2014) [Math. Notes, 96 (1), 130 (2014)]

31. Ivanov A. O., Tuzhilin A. A., 1992, “The geometry of minimal networks and the one-dimensional

32. Plateau problem”, Uspekhi Mat. Nauk. T. 47, No. 2.

33. A. Ivanov, A. Tuzhilin, 2014. “Minimal Fillings of Finite Metric Spaces, The State of the

34. Art”, in Discrete Geometry and Algebraic Combinatorics, ed. O. Musin and A. Bark, series

35. Contemporary Mathematics, v. 625 (AMS Press, RI, 2014) pp. 9–35.

36. A. O. Ivanov, Z. N. Ovsyannikov, N.P. Strelkova, A. A. Tuzhilin, 2012. “One-Dimensional

37. Minimal Fillings with Negative Edge Weights,” Vestnik Mosk. Un-ta, Matem. Mekhan., №

38. , 3 (2012) [Moscow Univ. Math. Bull., 67 (5–6), 189 (2012)].

39. A.Yu. Eremin, 2013. “A Formula for the Weight of a Minimal Filling of a Finite Metric Space,”

40. Matem. Sbornik, 204 (9), 51 (2013) [Sbornik: Math., 204 (9), 1285 (2013)].

41. D. Z. Du, F. K. Hwang, 1992 A proof of Gilbert–Pollak Conjecture on the Steiner ratio,

42. Algorithmica, 7 (1992), 121–135.

43. M. Gromov, 1983. Filling Riemannian manifolds, J. Diff. Geom., 18:1 (1983), 1–147.

44. D. Burago, Yu. D. Burago, S. Ivanov, 2004. A Course in Metric Geometry, Institute of Computer

45. Research, Moscow-Izhevsk, 512 p.


Review

For citations:


Lipatov S.Yu. Transformations of metrics that preserve the geometric characteristics of finite metric spaces. Chebyshevskii Sbornik. 2021;22(5):138-160. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-138-160

Views: 303


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)