On Polyadic Liouville numbers
https://doi.org/10.22405/2226-8383-2021-22-5-243-251
Abstract
We study here polyadic Liouville numbers, which are involved in a series of recent papers. The canonic expansion of a polyadic number 𝜆 is of the form
$$𝜆 =∞Σ︁𝑛=0𝑎𝑛𝑛!, 𝑎𝑛 ∈ Z, 0 ≤ 𝑎𝑛 ≤ 𝑛.$$
This series converges in any field of 𝑝− adic numbers Q𝑝 .
We call a polyadic number 𝜆 a polyadic Liouville number, if for any 𝑛 and 𝑃 there exists a positive integer 𝐴 such that for all primes 𝑝 ,satisfying 𝑝 ≤ 𝑃 the inequality
$$|𝜆 − 𝐴|𝑝 < 𝐴^(−𝑛)$$
holds.
Let 𝑘 ≥ 2 be a positive integer. We denote for a positive integer 𝑚
$$Φ(𝑘,𝑚) = 𝑘^𝑘^(...)^𝑘$$
Let
$$𝑛𝑚 = Φ(𝑘,𝑚)$$
and let
$$𝛼 =∞Σ︁𝑚=0(𝑛𝑚)!.$$
Theorem 1. For any positive integer 𝑘 ≥ 2 and any prime number 𝑝 the series 𝛼 converges to a transcendental element of the ring Z𝑝. In other words, the polyadic number 𝛼 is globally transcendental.
About the Author
Vladimir Grigor’evich ChirskiiRussian Federation
doctor of physical and mathematical sciences, associate professor
References
1. Chirskii V. G., 2021, “On Polyadic Liouville numbers”, Chebyshevsky sbornik, Vol. 22, № 3, pp. 245–255.
2. Shidlovskii, A. B.1989.“ Transcendental Numbers”, W.de Gruyter.-Berlin.-New York. 467 pp.
3. Adams. W., 1990, “On the algebraic independence of certain Liouville numbers”,J.Pure and Appl.Algebra., Vol. 13, pp. 41–47.
4. Waldschmidt. M., 1990, “Independance algebrique de nombres de Liouville.”,Lect.Notes Math., Vol. 1415, pp. 225–235.
5. Chirskii V. G., 2020, “Arithmetic Properties of Euler-Type Series with a Liouvillean Polyadic Parameter”, Dokl. Math., Vol. 102, № 2, pp. 412–413.
6. Chirskii V. G., 2021, “ Arithmetic properties of values at polyadic Liouvillean point of Euler-type series with polyadic Liouvillean parameter”, Chebyshevsky sbornik, Vol. 22, № 2, pp. 304–312.
7. Chirskii V. G., 2006, “Generalization of the Notion of a Global Relation”, ( J. Math. Sci(N.Y)), Vol.137, № 2, pp. 4744–4754.
8. Chirskii V. G., 1994, “Qn series which are algebraically independent in all local fields”, (Vestn.Mosc.univ.Ser.1.,Math.,mech.), № 3, pp. 93–95.
9. Chirskii V. G., 2019, “Product Formula, Global Relations and Polyadic Integers”, Russ. J. Math. Phys., Vol.26, № 3, pp. 286–305.
10. Chirskii V. G., 2020, “ Arithmetic properties of generalized hypergeometric F- series”, Russ. J. Math. Phys., Vol.27, № 2, pp. 175–184.
11. Yudenkova E.Yu., 2021, “ Arithmetic properties of series of certain classes at polyadic Liouvillean point”, Chebyshevsky sbornik, Vol. 22, № 2, pp. 304–312
12. Yudenkova E.Yu., 2021, “ Infinite linear and algebraic independence pf values of F-series at polyadic Liouvillean point”, Chebyshevsky sbornik, Vol. 22, № 2, pp. 334–346.
13. Matveev V.Yu., 2016, “ Algebraic independence of certain almost polyadic series”, Chebyshevsky sbornik, Vol. 17, № 3, pp. 156–167.
14. Matveev V.Yu., 2019, “ Properties of elements of direct products of fields”, Chebyshevsky sbornik, Vol. 20, № 2, pp. 383–390.
15. Krupitsin E. S., 2019, “ Arithmetic properties of series of certain classes”, Chebyshevsky sbornik, Vol. 20, № 2, pp. 374–382.
16. Samsonov A. S., 2021, “ Arithmetic properties of elements of direct products of p-adic fields II”, Chebyshevsky sbornik, Vol. 22, № 2, pp. 236–256.
17. Munjos Vaskes A.H., 2021, “ Arithmetic properties of certain hypergeometric F-series”, Chebyshevsky sbornik, Vol. 22, № 2, pp. 519–527.
Review
For citations:
Chirskii V.G. On Polyadic Liouville numbers. Chebyshevskii Sbornik. 2021;22(5):243-251. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-243-251