On the mean values of the Chebyshev function and their applications
https://doi.org/10.22405/2226-8383-2021-22-5-198-222
Abstract
Assuming the validity of the extended Riemann hypothesis for the average values of Chebyshev functions over all characters modulo 𝑞, the following estimate holds
$$𝑡(𝑥; 𝑞) =Σ︁𝜒mod𝑞max𝑦≤𝑥|𝜓(𝑦, 𝜒)| ≪ 𝑥 + 𝑥1/2𝑞L2, L = ln 𝑥𝑞$$.
When solving a number of problems in prime number theory, it is sufficient that 𝑡(𝑥; 𝑞) admits an estimate close to this one. The best known estimates for 𝑡(𝑥; 𝑞) previously belonged to
G. Montgomery, R. Vaughn, and Z. Kh. Rakhmonov. In this paper we obtain a new estimate of the form
$$𝑡(𝑥; 𝑞) = Σ︁ 𝜒mod𝑞 max 𝑦≤𝑥 |𝜓(𝑦, 𝜒)| ≪ 𝑥L^28 + 𝑥^(4/5) 𝑞^(1/2)L^31 + 𝑥^(1/2)𝑞L^32$$,
using which for a linear exponential sum with primes we prove a stronger estimate $$𝑆(𝛼, 𝑥) ≪ 𝑥𝑞^(−1/2)L^33 + 𝑥^(4/5)L^32 + 𝑥^(1/2)𝑞^(1/2)L^33$$, when $$|𝑎-a/q|<1/q^2, (a,q)=1$$.
We also study the distribution of Hardy-Littlewood numbers of
the form 𝑝+𝑛2 in short arithmetic progressions in the case when the difference of the progression is a power of the prime number.
About the Authors
Zarullo Khusenovich RakhmonovUzbekistan
doctor of physical and mathematical sciences, professor,
academician
Opokkhon Okilkhonovich Nozirov
Uzbekistan
References
1. Linnik, U. V., 1980, Izbrannye trudy. (Russian) [Selected works.], Leningrad, Nauka.
2. Linnik, U. V., 1946, “A new proof of the Goldbach–Vinogradow theorem”, Rec. Math. [Mat. Sbornik] N.S., vol. 19(61), Is. 1, pp. 3–8.
3. Linnik, U. V., 1945, “On the possibility of a unique method in certain problems of ’additive’ and ’distributive’ prime number theory”, Dokl. Akad. Nauk SSSR, vol. 49, Is. 1, pp. 3–7.
4. Linnik, U. V., 1946, “On the density of the zeros of 𝐿-series”, Bull. Acad. Sci. URSS. S´er. Math. [Izvestia Akad. Nauk SSSR], vol. 10, Is. 1, pp. 35–46.
5. Karatsuba A. A., 1970, “The distribution of products of shifted prime numbers in arithmetic progressions”, Dokl. Akad. Nauk SSSR, vol. 192, Is. 4, pp. 724–727.
6. Montgomery, H., 1971, Topics in Multiplicative Number Theory, vol. 227. Springer-Verlag, Berlin-New York.
7. Vaughan, R. O., 1975, “Mean value theorems in prime number theory”, J.London Math. Soc., vol. s2-10, Is. 2, pp. 153-162, https://doi.org/10.1112/jlms/s2-10.2.153
8. Rakhmonov, Z. Kh., 1990, “The distribution of Hardy–Littlewood numbers in arithmetic progressions”, Mathematics of the USSR-Izvestiya, vol. 34, Is. 1, pp. 213-228,
9. http://dx.doi.org/10.1070/IM1990v034n01ABEH000621.
10. Rakhmonov, Z. Kh., 1994, “Theorem on the mean value of 𝜓(𝑥, 𝜒) and its applications”, Russian Academy of Sciences. Izvestiya Mathematics, vol. 43, Is. 1, pp. 49–64. doi.org/10.1070
11. /IM1994v043n01ABEH001558.
12. Rakhmonov, Z. Kh., 1994, “Mean values of the Chebyshev function”, Russ. Acad. Sci., Dokl., Math., vol. 48, Is. 1, pp. 85-87. http://www.zentralblatt-math.org/zmath/search/?an=Zbl
13. 11030
14. Vinogradov, I. M., 1952, Izbrannye trudy. (Russian) [Selected works.], Izdat. Akad. Nauk SSSR, Moscow.
15. Tchudakoff N., 1947, “On Goldbach-Vinogradov‘s theorem”, Annals of Mathematics. Second Series, vol. 1947, pp. 515-545.
16. Chudakov N. G., 1947, Introduction to the theory of Dirichlet 𝐿-functions, OGIZ, Moscow–Leningrad.
17. Hardy G.H., &, Littlwood I.E., 1923, “Some problems of partitio numerorum III. On the expression of number as a sum of primes”, Acta Math., vol. 44, pp. 1-70.
18. Hardy, G. H., & Wright, E. M., 1954, An introduction to theory of numbers, 3rd ed. Oxford, at the Clarendon Press.
19. Babaev, G., 1958, “Remark on a paper of Davenport and Heilbronn”, Uspehi Mat. Nauk, vol. 13, Is. 6(84), pp. 63–64.
20. Rakhmonov, Z. Kh., 1995, “On the distribution of the values of Dirichlet characters and their applications”, Proc. Steklov Inst. Math., vol. 207, pp. 263–272.
21. Weil, A., 1948, “On Some Exponential Sums”, Proc. Nat. Acad. Sci. U.S.A., vol. 34, Is. 5, pp. 204 — 207. doi: 10.1073/pnas.34.5.204.
22. Cochrane, T. 2002, “Exponential sums modulo prime powers”, Acta Arithmetica, vol. 101. pp. 131 – 149. doi:10.4064/aa101-2-5.
23. Ismoilov D, 1986, “Estimate of a character sum of polynomials”, Dokl. Acad. Nauk Tadjhik SSR, vol. 29, no 10, pp. 567-571. (Russian).
24. Ismoilov D., 1986, “Estimate of a character sum of rational functions”, Dokl. Acad. Nauk Tadjhik SSR, vol. 29, no 11, pp. 635-639. (Russian).
25. Ismoilov D., 1990, “Lower bounds on character sums of polynomials with respect to a composite modulus”, Dokl. Acad. Nauk Tadzhik SSR, vol. 33, no 8, pp. 501-505. (Russian).
26. Ismoilov D., 1991, “Estimates of complete character sums of polynomials”, Trudy Mat. Inst. Steklov, vol. 200, pp. 171-186, (Russian); English transl. in Proc. Steklov Inst. Math. 200 (1993), 189-203.
27. Ismoilov D., 1993, “A lower bound estimate for complete sums of characters of polynomials and rational functions”, Acta Math. Sinica, New Series, vol. 9, pp. 90-99.
28. Ismoilov D., 1991, “Estimates for complete trigonometric sums”, Number Theory and Analysis, Trudy Mat. Inst. Steklov, vol. 207, pp. 153-171, (Russian); English transl. in Proc. Steklov Inst. Math. 207 (1995), 137-153.
29. Postnikov A. G., 1955, “On a character sum modulo a prime power of a prime”, Izv. Acad. Nauk SSR, ser. Mathem., vol. 19, no 1, pp. 11 – 16. (Russian)
30. Mardjhanashvili K. K., “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, vol. 22, Is. 7, pp. 391–393.
31. Karatsuba A. A., 1993, Basic analytic number theory, Springer-Verlag, Berlin, xiv+222 pp.
32. Prachar K., 1957, Primzahlverteilung, Springer-Verlag.
33. Heath-Brown D. R., 1982, “Prime numbers in short intervals and a generalized Vaughan identity”, Canad. J. Math., vol. 34, pp. 1365-1377.
Review
For citations:
Rakhmonov Z.Kh., Nozirov O.O. On the mean values of the Chebyshev function and their applications. Chebyshevskii Sbornik. 2021;22(5):198-222. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-198-222