On multiple rational trigonometric sums over a field of algebraic numbers
https://doi.org/10.22405/2226-8383-2021-22-4-306-323
Abstract
The paper describes the basic properties of polynomial comparisons modulo an ideal in the ring of integers of an algebraic number field, estimates of total rational trigonometric sums from a polynomial over an algebraic field are found, estimates of sums of Dirichlet characters modulo the degree of a prime ideal in an algebraic field are obtained, estimates of multiples of total rational trigonometric sums from polynomials over an algebraic field are given.
Keywords
About the Author
Vladimir Nikolaevich ChubarikovRussian Federation
doctor of physical and mathematical sciences, professor
References
1. Vinogradov, I. M., 1917, A new method for obtaining asymptotic expressions of arithmetic functions, Izv. RAS, 41, 𝑁𝑜.16, с.1347–1378.
2. Vinogradov, I. M., 1918, On the average value of the number of classes of purely indigenous forms of the negative determinant, Message. Kharkiv. mat. o-va, issue 1, 𝑁𝑜.1−2, pp. 10–38.
3. Vinogradov, I. M., 1918, Sur la distribution des r´esidues et des non-r´esidues des puissances, Journal of Physics-mat. o-va at Perm. University, issue 1, pp. 94–98.
4. Vinogradov, I. M., 1925, An elementary proof of a general theorem of analytic number theory, Izv. RAS, 19, 𝑁𝑜.16 − 17, pp. 785–796. Res. in French lang.
5. Vinogradov, I. M., 1926, About the distribution of indexes, Dokl. USSR Academy OF Sciences, 𝑁𝑜.4, pp. 73–76.
6. Vinogradov, I. M., 1927, On the bound of the least non-residues of 𝑛-th powers, Trans. Am. math. Soc., 29, 𝑁𝑜.1, pp. 218–226.
7. Vinogradov, I. M., 1924, Sur un th´eor`eme g´en´eral de Waring, Math. collection., 31, pp. 490– 507.
8. Vinogradov, I. M., 1926, On the question of the distribution of fractional fractions of the values of functions of one variable, Journal. Leningr. phys.-mat. o-va., bf 1, issue. 1, pp. 56–65. Res. in French lang.
9. Vinogradov, I. M., 1927, On the distribution of fractional fractions of the values of functions of two variables, Izv. Leningr. Polytechnic institute, bf 30, pp. 31–52. Res. in French lang.
10. Vinogradov, I. M., 1928, On Waring’s theorem, Izv. AN USSR. OFMN, 𝑁𝑜.4, pp. 393–400.
11. Vinogradov, I. M., 1934, A new solution to the Waring problem, Dokl. USSR Academy of Sciences., 2 𝑁𝑜.6, pp. 337–341. Text on russian language and rez. on english language.
12. Vinogradov, I. M., 1934, On some new problems of number theory, Dokl. USSR Academy of Sciences., 3 𝑁𝑜.1, pp. 1–6. Text on russian language and rez. on english language.
13. Vinogradov, I. M., 1934, New assessment 𝐺(𝑛) in the Waring problem, Dokl. USSR Academy OF Sciences., 4 𝑁𝑜.5 − 6, pp. 249–253. Text on russian language and rez. on english language.
14. Vinogradov, I. M., 1934, About the upper bound 𝐺(𝑛) in the Waring problem, Izv. of the USSR Academy of Sciences. OMEN, 𝑁𝑜.10, pp. 1455–1469. Rez. on english language.
15. Vinogradov, I. M., 1935, New estimates of Weyl sums, Dokl. USSR Academy OF Sciences., 3 𝑁𝑜.5, pp. 195–198.
16. Vinogradov, I. M., 1937, Representation of an odd number by the sum of three primes, Dokl. USSR Academy OF Sciences, 15 𝑁𝑜.6 − 7, pp. 291–294.
17. Vinogradov, I. M., 1939, Estimates of some simplest trigonometric sums with prime numbers, Izv. AN USSR. Ser. mat., 𝑁𝑜.4, pp. 371–398. Rez. on english language.
18. Vinogradov, I. M., 1958, Some problems of analytical number theory. — In: Proceedings of the Third All-Union Mathematical Congress. Moscow, June-July 1956, vol. 3. Review reports. M., Publishing House of the USSR Academy of Sciences, pp. 3–13.
19. Vinogradov, I. M., 1961, On the question of the distribution of fractional parts of the values of a polynomial, Izv. AN USSR. Ser. mat, 25, 𝑁𝑜.6, pp. 749–754.
20. Vinogradov, I. M., Karatsuba, A. A., 1984, The method of trigonometric sums in number theory, Works of math. Institute of the USSR Academy of Sciences., 168, pp. 4–30.
21. Vinogradov, I. M., 1980, The method of trigonometric sums in number theory. — M.: Science, pp. 144.
22. Vinogradov, I. M., 1976, Special variants of the trigonometric sums method. — M.: Science, pp. 120.
23. Vinogradov, I. M., 2005, Fundamentals of number theory. — Moscow-Izhevsk: SIC ‘Regular and chaotic dynamics pp. 176.
24. Vinogradov, I. M., 1985, Selected Works, N.-Y., Heidelberg, Berlin, Springer-Verlag, pp. 401.
25. Gauss, K. F., 1801, Disquisitiones arithmeticae, Leipzig, Fleischer.
26. Hardy, G. H., Littlwood, J. E., 1923, Some problems of “Partitio Numerorum”:III. On the expression of a number as a sum of primes, Acta Math., 44, pp. 1–70.
27. Hardy, G. H., Littlwood, J. E., 1925, Some problems of “Partitio Numerorum”:VI. Further researches in Waring’s problem, Math. Z., 23, pp. 1–37.
28. Landau, E., 1927, Vorlesungen ¨uber Zahlentheorie, Erster Band. Leipzig, S. Hirzel.
29. Hua Loo-Keng., 1983, Selected Papers. — N.-Y., Heidelberg, Berlin, pp. 888.
30. Hua Loo-Keng. 1938, Some results in the additive prime number theory, Quart. J. Math. Oxford. Vol. 9. pp. 68–80.
31. Postnikov, A., G., 1955, On the sum of characters modulo the power of a prime number, Izv. AN USSR, ser. matem., 19, Vol. 1, pp. 11–16.
32. Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., 1987, Theory of multiple trigonometric sums. — M.: Science. Gl. ed.phys.-mat. lit., pp. 368.
33. Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., 2004, Trigonometric sums in number theory and analysis. De Gruyter expositions in mathematics; 39 — Berlin, New York: Walter
34. de Gruyter, pp. 554.
35. Wang Yuan., 1991, Diophantine Equations and Inequalities in Algebraic Number Fields. — Springer Verlag, Berlin, Heidelberg, pp. 168.
36. Marjanishvili, K. K., 1971, Ivan Matveevich Vinogradov (to the eightieth anniversary of his birth, Usp. mat. nauk, 26, Vol. 6, pp. 3–6.
37. Cassels, J. W. S., Vaughan, R. C., 1985, Ivan Matveevich Vinogradov (obituary), Bull. London Math. Soc., 17, pp. 584–600.
38. Shafarevich, I. R., 1991, Patriarch of Russian Mathematics, Bulletin of the USSR Academy of Sciences, 𝑁𝑜.9, pp. 96–100.
Review
For citations:
Chubarikov V.N. On multiple rational trigonometric sums over a field of algebraic numbers. Chebyshevskii Sbornik. 2021;22(4):306-323. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-4-306-323