Preview

Chebyshevskii Sbornik

Advanced search

On a class of factors of the Chebyshev polynomials

https://doi.org/10.22405/2226-8383-2021-22-4-241-252

Abstract

The article defines a class of 𝐷𝑛(𝑥) polynomials by specially designed nodes. Each of 𝐷𝑛(𝑥) is the factor of the Chebyshev polynomial of the first kind 𝑇2𝑛(𝑥). The research task for
polynomials 𝐷𝑛(𝑥) on the interval [0,1] is reduced to find values 𝐷𝑛(𝑥). The article contains exact expressions and estimates of values 𝐷𝑛(𝑥) in special nodes.

About the Author

Sergey Yurievich Soloviev
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Prasolov, V. V. 2004, Polynomials, Springer-Verlag, Berlin, 316 p.

2. Pashkovskij, S. 1983, Computational applications of Chebyshev polynomials and series, Nauka, Moscow, 384 p. (in Russian)

3. Chubarikov, V. N. 2015, “The arithmetic sum and gaussian multiplication theorem“, Chebyshevskij Sbornik, v. 16, no. 2, pp. 231-253. (in Russian)

4. Gradshteyn, I. S. & Ryzhik, I. M. 1966, Table of Integrals, Series, and Products, Academic Press, New York, 1086 p.

5. Milnor, J. 1982, “Hyperbolic geometry: the first 150 years“, Bull. Amer. Math. Soc., v. 6, no. 1, pp. 9–24.

6. Krasnov, V. A. 2013, “On integral expressions for volumes of hyperbolic tetrahedra“, Sovrem. Mat. Fundam. Napravl., v. 49, pp. 89-98 (in Russian)

7. Dunaev, A. S. & Schlychkov, V. I. 2015, Special Functions, UrFU, Ekaterinburg, 1321 p. (in Russian).

8. Abramowitz, M. & Stegun I. A. (eds.) 1964, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, NBS Applied Mathematics Series 55, National Bureau of Standards, Washington, 1046 р.

9. Prudnikov, A.P., Brychkov, Yu. A. & Marichev O. I. 1986, Integrals and Series, Volume 3: More Special Functions, Gordon and Breach Science Publishers, New York, 800 p.

10. Gordon, L. 1994, “A stochastic approach to the gamma function“, Amer. Math. Monthly, vol. 101, no. 9, pp. 858-864.

11. Berezin, I. S. & Zhidkov, N.P. 1966, Computing Methods, Volume 1., Nauka, Moscow, 632 p. (in Russian).

12. Bahvalov, N. S., Zhidkov, N.P. & Kobelkov, G. M. 2021, Numerical methods, Binom, Knowledge Laboratory, Moscow, 636 p. (in Russian).

13. Gelfand, I. M., Lvovsky, S. M. & Toom, A. L. 2008, Trigonometry, MCCME, Moscow, 199 p. (in Russia).

14. Prudnikov, A.P., Brychkov, Yu. A. & Marichev, O. I. 1986, Integrals and Series, Volume 1: Elementary Functions, Gordon and Breach Science Publishers, New York, 808 p.

15. Olver, F. W. J. 1974, Asymptotics and Special Functions, Academic Press, New York, 572 p.


Review

For citations:


Soloviev S.Yu. On a class of factors of the Chebyshev polynomials. Chebyshevskii Sbornik. 2021;22(4):241-252. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-4-241-252

Views: 307


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)