Riesz potential for (𝑘, 1)-generalized Fourier transform
https://doi.org/10.22405/2226-8383-2021-22-4-114-135
Abstract
In spaces with weight |𝑥|−1𝑣𝑘(𝑥), where 𝑣𝑘(𝑥) is the Dunkl weight, there is the (𝑘, 1)- generalized Fourier transform. Harmonic analysis in these spaces is important, in particular, in
problems of quantum mechanics. We define the Riesz potential for the (𝑘, 1)-generalized Fourier transform and prove for it, a (𝐿𝑞,𝐿𝑝)-inequality with radial power weights, which is an analogue of the well-known Stein–Weiss inequality for the classical Riesz potential. For the Riesz potential we calculate the sharp value of the 𝐿𝑝-norm with radial power weights. The sharp value of the 𝐿𝑝-norm with radial power weights for the classical Riesz potential was obtained independently by W. Beckner and S. Samko.
About the Author
Valerii Ivanovich IvanovRussian Federation
doctor of physical and mathematical sciences, professor
References
1. Hardy G. H., Littelwood J. E., 1928, "Some properties of fractional integrals, I" , Math. Zeit., vol. 27, pp. 565–606.
2. Soboleff S., 1938, "On a theorem in functional analysis" , Rec. Math. [Mat. Sbornik] N.S., vol. 4(46), no. 3, pp. 471–497.
3. Stein E. M., Weiss G., 1958, "Fractional integrals on n-dimensional Euclidean space" , J. Math. Mech., vol. 7, no. 4, pp. 503–514.
4. Gorbachev D. V., Ivanov V. I., 2019, "Weighted inequalities for Dunkl–Riesz potential" , Chebyshevskii sbornik, vol. 20, no. 1, pp. 131–147.
5. HerbstI. W., 1977, "Spectral theory of the operator (𝑝2+𝑚2)1/2−𝑍𝑒2/𝑟" , Comm. Math. Phys., vol. 53, pp. 285–294.
6. Beckner W., 2008, "Pitt’s inequality with sharp convolution estimates" , Proc. Amer. Math. Soc., vol. 136, no. 5, pp. 1871–1885.
7. Samko S., 2005, "Best constant in the weighted Hardy inequality: the spatial and spherical version" , Fract. Calc. Anal. Appl., vol.8, pp. 39–52.
8. Dunkl C. F., 1992, "Hankel transforms associated to finite reflections groups" , Contemp. Math., vol. 138, pp. 123–138.
9. R¨osler M., 2003, "Dunkl operators. Theory and applications, in Orthogonal Polynomials and Special Functions" , Lecture Notes in Math. Springer-Verlag, vol. 1817, pp. 93–135.
10. Thangavelu S., Xu Y., 2007, "Riesz transform and Riesz potentials for Dunkl transform" , J. Comput. Appl. Math., vol. 199, pp. 181–195.
11. Gorbachev D. V., Ivanov V. I., Tikhonov S.Yu., 2021, «Riesz potential and maximal function for Dunkl transform», Potential Analysis, vol. 55, no. 4, pp. 513–538.
12. Salem Ben Sa¨ıd, Kobayashi T., Ørsted B., 2012, "Laguerre semigroup and Dunkl operators" , Compos. Math., vol. 148, no. 4, pp. 1265–1336.
13. Salem Ben Sa¨id, Deleaval L., 2020, "Translation operator and maximal function for the (𝑘, 1)- generalized Fourier transform" , Journal of Functional Analysis, vol. 279, no. 8, Article 108706.
14. Gorbachev D. V., Ivanov V. I., Tikhonov S.Yu., 2016, "Pitt’s Inequalities and Uncertainty Principle for Generalized Fourier Transform" , International Mathematics Research Notices,
15. vol. 2016, no. 23, pp. 7179–7200.
16. Ivanov V. I., 2020, "Bounded translation operator for the (k,1)-generalized Fourier transform" , Chebyshevskii Sbornik, vol. 21, no. 4, pp. 85–96. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-4-85-96
17. Gorbachev D. V., Ivanov V. I., Tikhonov S.Yu., 2019, "Positive 𝐿𝑝-bounded Dunkl-type generalized translation operator and its applications" , Constr. Approx., vol. 49, no. 3, pp. 555– 605.
18. Ivanov V. I., 2021, "Properties and application of a positive translation operator for (k, 1)- generalized Fourier transform" , Chebyshevskii Sbornik, vol. 22, no. 4, pp. (In Russ.)
19. Bateman H., Erd´elyi A., 1954, "Tables of Integral Transforms. Vol.2" , New York, Toronto, London: MC GRAV-HILL Book COMPANY, INC, 328 p.
20. Watson G.N., 1995, "A treatise on the theory of Bessel functions" , Cambridge University Press, 814 p.
21. Sinnamon G, Stepanov V. D., 1996, “The weighted Hardy inequality: new proofs and the case 𝑝 = 1” , J. London Math. Soc., vol. 54, no. 2, pp 89–101.
22. Kufner A., Opic B., 1990, “Xardy-type inequalities" , Pitman Research Notes in Mathematics Series, Harlow: Longman Scientific and Technical, 333 p.
23. Kufner A., Persson L. E., 2003, “Weighted inequalities of Xardy type" , Singapore-London: World Scientific Publishing Co. Pte. Ltd., 358 p.
24. Bateman H., Erd´elyi A., 1953, “Higher Transcendental Functions, I" , New York: McGraw Hill Book Company, 296 p.
Review
For citations:
Ivanov V.I. Riesz potential for (𝑘, 1)-generalized Fourier transform. Chebyshevskii Sbornik. 2021;22(4):114-135. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-4-114-135