ON NON-LINEAR KLOOSTERMAN SUM
https://doi.org/10.22405/2226-8383-2016-17-1-140-147
Abstract
Exponential sums of a special type — so-called Kloosterman sums — play key role in the series of number-theoretic problems concerning the distribution of inverse residues in the residual rings of given modulo q. At the same time, in many cases, the estimates of such sums are based on A.Weil’s bound of so-called complete Kloosterman sum of prime modulo. This bound allows one to estimate Kloosterman sums of length N > q0.5+ε for any fixed ε > 0 with power-saving factor. Weil’s bound was proved originally by methods of algebraic geometry. Later, S. A. Stepanov gave an elementary proof of this bound, but this proof was also complete enough. The aim of this paper is to give an elementary proof of Kloosterman sum of length N > q0.5+ε, which also leads to power-saving factor. This proof is based on the trick of “additive shift” of the variable of summation which is widely used in different problems of number theory.
About the Author
M. A. KorolevRussian Federation
doctor of physical and mathematical sciences, the leading researcher of the Department of Algebra and Number Theory
References
1. Vinogradov, I. M. Elements of number theory, Dover Publications, 2003.
2. Salie, H. 1931, “ ¨Uber die Kloostermanschen Summen S(u, v; q)”, Math. Z., vol. 34, pp. 91—109.
3. Estermann, T. 1961, “On Kloosterman’s sum”, Mathematika, vol. 8, no. 1, pp. 83–86.
4. Weil, A. 1948, “On some exponential sums”, Proc. Nat. Acad. Sci. USA, vol. 34, pp. 204–207.
5. Stepanov S. A. 1971, “An estimation of Kloosterman sums”, Mathematics of the USSR -Izvestiya, vol. 5, no. 2, pp. 319–336.
6. Bourgain J. 2005, “More on the sum -product phenomenon in prime fields and its applications”, Int. J. Number Theory, vol. 1, pp. 1–32.
7. Baker R. C. 2012, “Kloosterman sums with prime variable”, Acta Arith., vol. 152, no. 4, pp. 351–372.
8. Vinogradov I. M. 1947, The method of trigonometrical sums in the theory of numbers. (Russian). Tr. Mat. Inst. Steklova 23 (1947).
9. Burgess D. A. 1962, “On character sums and primitive roots”, Proc. London Math. Soc., vol. 12, no. 3, pp. 179–192.
10. Karatsuba A. A. 1964, “Trigonometric sums of a special type and their applications”. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., vol. 28, no. 1, pp. 237—248.
11. Karatsuba A. A. 1970, “Estimates of character sums”. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., vol. 34, no. 1, pp. 20-–30.
12. Karatsuba A. A. 1970, “Sums of characters with prime numbers”. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., vol. 34, no. 2, pp. 299-–321
13. Karatsuba A. A. 2000, “Character sums with weights”, Izv. Math., vol. 64, no. 2, pp. 249-–263.
14. Bourgain J., Garaev M. Z. 2014, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., vol. 78, no. 4, pp. 656–707.
15. Fouvry E., Michel P. 1998, “Sur certaines sommes d’exponentielles sur les nombres premiers”, Ann. scient. ´ Ec. Norm. Sup., vol. 31, no. 1, pp. 93–130.
Review
For citations:
Korolev M.A. ON NON-LINEAR KLOOSTERMAN SUM. Chebyshevskii Sbornik. 2016;17(1):140-147. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-140-147