Values of hypergeometric 𝐹-series at polyadic Liouvillea points
https://doi.org/10.22405/2226-8383-2021-22-2-536-542
Abstract
This paper proves infinite algebraic independence of the values of hypergeometric 𝐹 – series at polyadic Liouville points. Hypergeometric functions are defined for |𝑧| < 1 by the power series:
$$Σ︁𝑛=0((𝛼1)𝑛 · · · (𝛼𝑟)𝑛)/((𝛽1)𝑛 . . . (𝛽𝑠)𝑛 𝑛!)𝑧^𝑛$$.
𝐹 – series have form 𝑓𝑛 = Σ︀∞ 𝑛=0 𝑎_𝑛𝑛!𝑧^𝑛 whose coefficients 𝑎𝑛 satisfy some arithmetic properties.
These series converge in the field Q𝑝 of 𝑝 – adic numbers and their algebraic extensions K𝑣. Polyadic number is a series of the form Σ︀∞𝑛=0 𝑎_𝑛𝑛!, 𝑎_𝑛 ∈ Z. Liouville number is a real number x
with the property that, for every positive integer n, there exist infinitely many pairs of integers (𝑝, 𝑞) with 𝑞 > 1 such that 0 <|𝑥 − 𝑝/𝑞| < 1/𝑞^𝑛 . The polyadic Liouville number 𝛼 has the property that for any numbers 𝑃,𝐷 there exists an integer |𝐴| such that for all primes 𝑝 ≤ 𝑃 the inequality |𝛼 − 𝐴|𝑝 < 𝐴^(-𝐷).
About the Author
Ekaterina Yurievna YudenkovaRussian Federation
graduate student
References
1. Galochkin A. I. 1970, “On algebraic independence of the values of 𝐸 – functions at certain transcendental points“, Moscow University Mathematics Bulletin, iss. 1, no. 5, pp. 58-63.
2. Bombieri E., 1981, “On 𝐺 – functions“, Recent Progress in Analytic Number Theory, Academic Press (London), vol. 2, pp. 1-68.
3. Shidlovskii, A. B. 1989, “Transcendental numbers“, Studies in mathematics, Walter de Gruyter (Berlin, New York), vol. 12
4. Chirskii V. G. 2019, “Product formula, global relations and polyadic integers“, Russian Journal of Mathematical Physics, Maik Nauka/Interperiodica Publishing (Russian Federation), 2019 vol. 26, no. 2, pp. 175-184.
5. Chirskii, V. G. 2015, “Arithmetic properties of Euler series“, Moscow University Mathematics Bulletin, Allerton Press Inc.(United States), vol. 70, no. 1, pp. 41-43.
6. Chirskii, V. G. 2017, “Arithmetic properties of polyadic series with periodic coefficients“, Izvestiya Mathematics, American Mathematical Society (United States), vol. 81, no. 2, pp.
7. -461. 7. Chirskii, V. G. 2018, “Arithmetic properties of generalized hypergeometric F-series“, Doklady
8. Mathematics, Maik Nauka/Interperiodica Publishing (Russian Federation), vol. 98, no. 3, pp. 589-591.
9. Chirskii V. G. Arithmetic Properties of Generalized Hypergeometric 𝐹 – Series // Russian Journal of Mathematical Physics, Maik Nauka/Interperiodica Publishing (Russian Federation), 2020, vol. 27, no. 2, pp. 175-184.
10. Chirskii, V. G. 2014, “Arithmetic properties of polyadic series with periodic coefficients“, Doklady Mathematics, Maik Nauka/Interperiodica Publishing (Russian Federation), vol. 90, no. 3, pp. 766-768.
11. Chirskii, V. G. 2014, “On the arithmetic properties of generalized hypergeometric series with irrational parameters“, Izvestiya Mathematics, American Mathematical Society (United States), vol. 78, no. 6, pp. 1244-1260.
12. Chirskii, V. G. 2011, “Estimates of linear forms and polynomials in polyadic numbers”, Chebyshevskii Sb., 12:4, pp.129-133.
13. Chirskii, V. G. 1990, “Global relations”, Mat. Zametki, vol. 48, no. 2, pp. 123–127
14. Chirskii, V. G. 2014, “Arithmetic properties of polyadic series with periodic coefficients“, Doklady
15. Mathematics, Maik Nauka/Interperiodica Publishing (Russian Federation), vol. 90, no. 3, pp. 766-768.
16. Chirskii, V.,G. 2017, “Arithmetic properties of polyadic series with periodic coefficients“, Izvestiya Mathematics, American Mathematical Society (United States), vol. 81, no. 2, pp.
17. -461.
18. Chirskii, V. G. 2016, “On transformations of periodic sequences”, Chebyshevskii Sb., vol. 17, no. 3, pp. 191–196.
19. Chirskii, V. G. 2015, “Arithmetic properties of polyadic integers”, Chebyshevskii Sb., vol. 16, no. 1, pp. 254–264.
20. Andr´e Y. 2000, “S´eries Gevrey de type arithm´etique“, Annals of Mathematics, vol. 151, pp. 705-740
21. Chirskii V. G. Arithmetic properties of Generalized Hypergeometric Series // Russian Journal of Mathematical Physics, Maik Nauka/Interperiodica Publishing (Russian Federation). 2020. Vol. 27, №2, pp. 175-184.
22. Matala–Aho T. & Zudilin W. 2018, “Euler factorial series and global relations“, J. Number Theory, vol. 186, pp. 202-210.
23. Bertrand, D., Chirskii, V. G. & Yebbou, Y. 2004, “Effective estimates for global relations on Euler-type series“, Ann. Fac. Sci. Toulouse, vol. XIII, no. 2, pp. 241-260.
Review
For citations:
Yudenkova E.Yu. Values of hypergeometric 𝐹-series at polyadic Liouvillea points. Chebyshevskii Sbornik. 2021;22(2):536-542. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-536-542