Preview

Chebyshevskii Sbornik

Advanced search

Symmetries of Einstein–Weyl manifolds with boundary

https://doi.org/10.22405/2226-8383-2021-22-2-510-518

Abstract

Starting from a real analytic surface ℳ with a real analytic conformal Cartan connection A. Bor´owka constructed a minitwistor space of an asymptotically hyperbolic Einstein–Weyl manifold with ℳ being the boundary. In this article, starting from a symmetry of conformal Cartan connection, we prove that symmetries of conformal Cartan connection on ℳ can be extended to symmetries of the obtained Einstein–Weyl manifold.

About the Author

Rouzbeh Mohseni
Jagiellonian University, Institute of Mathematics
Poland


References

1. Bor´owka, A. & Winther, H. 2019, “C-projective symmetries of submanifolds in quaternionic geometry" , Ann. Glob. Anal. Geom. Vol. 55, No. 3, pp. 395. doi: 10.1007/s10455-018-9631-3

2. Bor´owka, A. 2014, “Twistor construction of asymptotically hyperbolic Einstein–Weyl spaces" , Differ. Geom. Appl. Vol. 35, pp. 224-41. doi: 10.1016/j.difgeo.2014.05.003

3. Burstall, F. & Calderbank, D. 2004, “Submanifold geometry in generalized flag varieties" , Rendiconti del Circolo Matematico di Palermo Series 72, pp. 13-41.

4. Calderbank, D. & Pedersen, H. 1999, “Einstein-Weyl geometry" , Surveys in Differential Geometry. Vol. 6. doi: 10.4310/SDG.2001.v6.n1.a14.

5. Hitchin, N. J. 1982, “Complex manifolds and Einstein’s equations" , In: Doebner HD, Palev TD. (eds). Twistor Geometry and Non-Linear Systems. Lecture Notes in Mathematics 1982.

6. , Springer, Berlin-New York, 1982, pp. 73-99. doi: 10.1007/BFb0066025

7. Honda, N. & Nakata, F. 2011, “Minitwistor spaces, Severi varieties, and Einstein-Weyl structure" , Ann. Glob. Anal. Geom. Vol. 39, pp. 293-323. doi: 10.1007/s10455-010-9235-z

8. Jones, P. E. & Tod, K. P. 1985, “Minitwistor spaces and Einstein-Weyl spaces" , Class. Quantum Gravity, Vol. 2, No. 4, pp. 565-77. doi: 10.1088/0264-9381/2/4/021

9. Nakata, F. 2009, “A construction of Einstein-Weyl spaces via Lebrun-Mason type twistor correspondence"

10. , Communications in Mathematical Physics. Vol. 289, pp. 663-99. doi: 10.1007/s00220-009-0750-3

11. Penrose, R. 1967, “Twistor algebra" , J. Math. Phys. Vol. 8, pp. 345-66. doi: 10.1063/1.1705200

12. Penrose, R. 1976, “Nonlinear gravitons and curved twistor theory" , Gen. Relativ. Gravit. Vol. 7, pp. 31-52. doi: 10.1007/BF00762011


Review

For citations:


Mohseni R. Symmetries of Einstein–Weyl manifolds with boundary. Chebyshevskii Sbornik. 2021;22(2):510-518. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-510-518

Views: 336


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)