Preview

Chebyshevskii Sbornik

Advanced search

LINEAR SUMS AND THE GAUSSIAN MULTIPLICATION THEOREM

https://doi.org/10.22405/2226-8383-2016-17-1-130-139

Abstract

Estimations of linear sums with Bernoulli polynomial of the first degree are given. If the coefficient of the linear function is a irrational number with the bounded partial quotients, thearithmetical sum has the “squaring” estimation. The Roth’s theorem gives the similar estimation for all algebraic number, but the constants in estimations be nonefficient. New difficulties appears for sums over primes. Their are connected with the consideration of bilinear forms.

About the Authors

O. V. Kolpakova
Lomonosov Moscow State University
Russian Federation

Candidate of Physico-Mathematical Sciences, Associate Professor



V. N. Chubarikov
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor, head of the Department of mathematical and computer methods of analysis, dean of the mechanics and mathematics faculty of the M. V. 



References

1. Vinogradov I. M. 1981, Fundamentals of Number Theory, Nauka, Moscow, 176 p.

2. Vinogradov I. M. 1980, Method of trigonometric sums in Number Theory, Nauka, Moscow, 144 p.

3. Кaсселс Дж. В. С. 1961, Introduction to the theory of diophantine approximation ed. foreign of literature, Moscow, 213 p.

4. Roth K. F. 1955, ”Rational approximations of algebraic numbers” , Mathematika, Moscow, vol. 2, pp. 1-20.

5. Chubarikov V. N. 1976, ”About one multiple trigonometric integrals” , rep. USSR AS, vol. 227, no. 6, pp. 1308-1310.

6. Chubarikov V. N. 1976, ”Multiple rational trigonometric sums and multiple integrals” , Mat. notes, vol. 20, no. 1, pp. 61-68.

7. Arkhipov G. I. 2013, Selected works, ed. of Orjol Stste Univ., Orjol, 464 p.

8. Arkhipov G. I. Karatsuba A. A., Chubarikov V. N. 1987, Theory of multiple trigonometric sums, Nauka, Moscow, 368 p.

9. Arkhipov G. I. Sadovnichy V. A., Chubarikov V. N. 2006, Lectures on mathematical analysis, Drofa, Moscow, 640 p.

10. Vinogradov I. M. 1936, Math. USSR-Sb. ” The new method of estimation of trigonometrical sums” , Vol. 43, no. 1, Moscow, pp. 175–188.

11. Hua L.-K. 1949, ”An improvement of Vinogradov’s mean-value theorem and several applications” , Quart. J. Math., Vol. 20, 1949, pp. 48–61.

12. Arkhipov G. I. 1975, ”A theorem on the mean value of the modulus of a multiple trigonometric sum” , Math. Notes, Vol. 17, pp. 84–90.

13. Arkhipov G. I., Chubarikov V. N. 1979, ”Multiple trigonometric sums” , Izv. Akad. Nauk SSSR, Ser. Mat. Vol. 40 no. 1, pp. 209–220.

14. Hua L.-K. 1940, ”On an exponential sums” , J. Chinese Math. Soc., Vol. 2, pp. 301-312.

15. Chen,J.-R. 1977, ”On Professor Hua’s estimate on exponential sums” , Acta Sci. Sinica, Vol. 20, no. 6, pp. 711-719.

16. Romanov N. P. 2013, Number Theory and functional analysis: proceedings/under the total ed. V. Н. Chubarikov, Tomsk, Izd-vo., Tom. un-ta, 478 p.

17. Shihsadilov M. Sh. 2015, ”Об одном клaссе осцилирующих интегрaлов” , Vestnik Moskow Univ. Ser. mat., meh., Vol 5, pp. 61–63.

18. Arkhipov G. I., Karatsuba A. A., Chubarikov V. N. 1979, ”Trigonometric integrals” , Izv. Akad. Nauk SSSR, Ser. Mat., Vol. 43, no. 5, pp. 971-1003.

19. Titchmarsh E. C. 1986, The Theory of the Riemann Zeta-function 2nd ed., The Clarendon Press, Oxford University Press, New York.

20. Arkhipov, G. I., Chubarikov, V. N. & Karatsuba, A. A. 2004, ”Trigonometric Sums in Number Theory and Analysis” , De Gruyter expositions in mathematics Vol. 39, Berlin, New York.

21. Hua L. K. 1947, ”Additive theory of prime numbers” , Trudy MIAN SSSR, Vol. 22, pp. 1-179.

22. Montgomery H. L. 1994, ”Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysys” , CBMS, Regional Conference Series in Mathematics, no. 84.

23. Hua L.-K. 1953 ”On the number of solutions of Tarry’s problem” , Acta Sci. Sinica, Vol. 1, pp.1-76.

24. Chubarikov V. N. 2015 ”Linear arithmetic sums and Gaussian multiplication theorem” , Abstracts Azerbaijan-Turkey-Ukrainian Int.Conf. ”Mathematical Analysis, Differential Equations and their Applications” , Baku-Azerbaijan, September 08-13, 2015, pp. 38.


Review

For citations:


Kolpakova O.V., Chubarikov V.N. LINEAR SUMS AND THE GAUSSIAN MULTIPLICATION THEOREM. Chebyshevskii Sbornik. 2016;17(1):130-139. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-130-139

Views: 515


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)