Preview

Chebyshevskii Sbornik

Advanced search

The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation

https://doi.org/10.22405/2226-8383-2021-22-2-257-270

Abstract

In that paper we study atoms of congruence lattices and subdirectly irreducibility of algebras with one operator and the main symmetric operation. A ternary operation 𝑑(𝑥, 𝑦, 𝑧) satisfying identities 𝑑(𝑥, 𝑦, 𝑦) = 𝑑(𝑦, 𝑦, 𝑥) = 𝑑(𝑦, 𝑥, 𝑦) = 𝑥 is called a minority operation. The symmetric operation is a minority operation defined by specific way. An algebra 𝐴 is called subdirectly irreducible if 𝐴 has the smallest nonzero congruence. An algebra with operators is an universal algebra whose signature consists of two nonempty non-intersectional parts: the main one which can contain arbitrary operations, and the additional one consisting of operators. The operators are unary operations that act as endomorphisms with respect to the main operations, i.e., one that permutable with main operations. A lattice 𝐿 with zero is called atomic if any element of 𝐿 contains some atom. A lattice 𝐿 with zero is called atomistic if any nonzero element of 𝐿 is a join of some atom set.
It shown that congruence lattices of algebras with one operator and main symmetric operation are atomic. The structure of atoms in the congruence lattices of algebras in given class is described. The full describe of subdirectly irreducible algebras and of algebras with an atomistic congruence lattice in given class is obtained.

About the Author

Vadim Leonidovich Usol’tsev
Volgograd State Social-Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



References

1. Smirnov, D. M. 1992, “Mnogoobrasiya algebr“ [“Varieties of algebras“], VO “Nauka“, Sibirskaya izdatel’skaya firma, Novosibirsk, 205 p. (Russian)

2. McKenzie, R. & Stanovsk´y, D. 2006, “Every quasigroup is isomorphic to a subdirectly irreducible quasigroup modulo its monolith“, Acta Sci. Math. (Szeged), vol. 72, pp. 59–64.

3. Wenzel, G. H. 1970, “Subdirect irreducibility and equational compactness in unary algebras ⟨𝐴; 𝑓⟩“, Archiv der Mathematik, Basel, vol. 21, pp. 256–264. DOI: 10.1007/BF01220912

4. P lonka, J. 1983, “Subdirectly irreducible groupoids in some varieties“, Commentationes Mathematicae Universitatis Carolinae, vol. 24, no. 4, pp. 631–645.

5. Garcia, P. & Esteva, F. 1995, “On Ockham Algebras: Congruence Lattices and Subdirectly Irreducible Algebras“, Studia Logica, vol. 55, pp. 319–346. DOI: 10.1007/BF01061240

6. Celani, S. A. 2006, “Simple and subdirectly irreducibles bounded distributive lattices with unary operators“, International Journal of Mathematics and Mathematical Sciences, vol. 2006, Article ID 21835, pp. 1—20. DOI: 10.1155/IJMMS/2006/21835

7. ´Esik, Z. & Imreh, B. 1981, “Subdirectly irreducible commutative automata“, Acta Cybernetica, vol. 5, no. 3, pp. 251–260.

8. Chajda, I. & L¨anger, H. 2016, “Subdirectly irreducible commutative multiplicatively idempotent semirings“, Algebra Universalis, vol. 76, pp. 327–337. DOI: 10.1007/s00012-016-0403-2

9. Kozhukhov, I. B. & Haliullina, A. R. 2015, “A characterization of subdirectly irreducible acts“, Prikladnaya diskretnaya matematika, vol. 1, pp. 5–16 (Russian).

10. Berman, J. 1972, “On the congruence lattices of unary algebras“, Proceedings of the American Mathematical Society, vol. 36, pp. 34–38. DOI: 10.1090/S0002-9939-1972-0309833-6

11. Loi, N. V. & Wiegandt, R. 2005, “Subdirect irreducibility of algebras and acts with an additional unary operation“, Miskolc Mathematical Notes, vol. 6, no. 2, pp. 217–224.

12. Usoltsev, V. L. 2005, “On subdirectly irreducible unars with Mal’tsev operation“, Izvestiya Volgogradskokgo gosudarstvennogo pedagogicheskogo universiteta. Seriya "Estestvennye i fizikomatematicheskie nauki", vol. 4, pp. 17–24 (Russian).

13. Szendrei, A. 1986, “Clones in universal algebra“, Les presses de l’Universit´e de Montr´eal, Montr´eal, 166 p.

14. Kartashov, V. K. 1999, “On unars with Mal’tsev operation“, Universal’naya algebra i ee prilozheniya: Tezisy soobshcheniy uchastnikov mezhdunarodnogo seminara, posvyashchennogo

15. pamyati prof. Mosk. gos. un-ta L.A. Skornyakova (Universal algebra and application: theses of Int. workshop dedicated memory of prof. L. A. Skornyakov), Volgograd, pp. 31–32. (Russian)

16. Usoltsev, V. L. 2008, “Unars with ternary Mal’tsev operation“, Uspekhi matematicheskikh nauk, vol. 63, no. 5, pp. 201–202; translated in Russian Mathematical Surveys, 2008, vol. 63, no. 5, pp. 986-987.

17. Usoltsev, V. L. 2014, “The structure of atoms in the congruence lattices of algebras in one class of unars with the Mal’tsev operation“, Sovremennye problemy gumanitarnykh i estestvennykh nauk: Materialy XVIII mezhdunarodnoy nauchno-prakticheskoy conferentsii (Modern problems of gumanitary and natural sciences: Proc. XVIII Int. scientific-practical conf.), Moscow, pp. 39– 44 (Russian).

18. Usoltsev, V. L. 2011, “Free algebras in the variety of unars with Mal’tsev operation that defined by identity 𝑝(𝑥, 𝑦, 𝑥) = 𝑦“, Chebyshevskiy sbornik, vol. 12, no. 2(38), pp. 127–134. (Russian)

19. Mar´oti M., McKenzie R. 2008, “Existence theorems for weakly symmetric operations“, Algebra Universalis, vol. 59, no. 3-4, pp. 463-489.

20. Bulatov A., Krokhin A. & Jeavons P. 2005, “The complexity of constraint satisfaction: An algebraic approach“, Structural Theory of Automata, Semigroups and Universal Algebra, Berlin,

21. Springer-Verlag, pp.181-213.

22. Usoltsev, V. L. 2012, “On polynomially complete and Abelian unars with Mal’tsev operation“, Uchenye Zapiski Orlovskogo Gosudarstvennogo Universiteta, vol. 6(50), part 2, pp. 229–236.

23. (Russian)

24. Usoltsev, V. L. 2014, “On Hamiltonian ternary algebras with operators“, Chebyshevskiy sbornik, vol. 15, no. 3(51), pp. 100–113. (Russian)

25. Usoltsev, V. L. 2016, “On congruence lattices of algebras with one operator and basic nearunanimity operation“, Nauchno-tekhnicheskiy vestnik Povolzhya, vol. 2, pp. 28–30 (Russian).

26. Lata, A. N. 2017, “On congruence coherent Rees algebras and algebras with an operator“, Chebyshevskiy sbornik, vol. 18, no. 2(62), pp. 154–172. (Russian) DOI: 10.22405/2226-8383-

27. -18-2-154-172

28. Usoltsev, V. L. 2010, “Simple and pseudosimple algebras with operators“, Journal of Mathematical Sciences, vol. 164, no. 2, pp. 281-293. DOI: 10.1007/S1095800997306


Review

For citations:


Usol’tsev V.L. The subdirect irreducibility and the atoms of congruence lattices of algebras with one operator and the symmetric main operation. Chebyshevskii Sbornik. 2021;22(2):257-270. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-257-270

Views: 493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)