Combinatorics on words, facrordynamics and normal forms
https://doi.org/10.22405/2226-8383-2021-22-2-202-235
Abstract
Methods of symbolic dynamics play an essential role in the study of combinatorial properties of words, problems in number theory and the theory of dynamical systems. The paper is devoted
to the problems of combinatorics on words, its applications in algebra and dynamical systems.
Section 2.1 considers the one-dimensional case using the key example of Sturm’s words. The proof of the criterion for substitutionality of Sturm palindromes using the Rauzy induction is given, the case of one-dimensional facordynamics is considered. Section 2.2 discusses the shift of the torus and the Rauzy fractal that generates the word Tribonacci. The relationship between the periodicity of Rauzy’s schemes and the substitutionality of the word generated by this system is discussed. The implementation of the word Tribonacci through the rearrangement of line segments is given. An approach to the Pisot hypothesis is outlined. Section 2.3 talks about
unipotent torus transformations and billiards in polygons.
Chapter 3 talks about normal forms and the growth of groups and algebras. Chapter 4 is devoted to Rosie graphs, Gr¨obner bases and co-growth, and algebraic applications. Section 4.1
discusses the results in the combinatorics of multilinear words developed by V. N. Latyshev and the problems he posed. Section 4.2 talks about finitely defined objects and the problems of
controlling the relationships that define them. Section 4.3 describes some monomial algebras in terms of uniformly recurrent words.
Chapter 5 deals with the problem of height and normal forms.
Keywords
About the Author
Ivan Andreevich ReshetnikovRussian Federation
graduate student
References
1. Adian S.I. The Burnside problem and identities in groups, (in Russian) Izdat. Nauka’, Moscow, 1975. 335 pp.
2. Adian,S.I., Razborov A.A., Periodic groups and Lie algebras, Russian Mathematical Surveys (1987),42(2):1 Available at: http://dx.doi.org/10.1070/RM1987v042n02ABEH001307
3. Aleshin S.V., Free group of finite automata, Vestn. Moscow un. Ser. 1. Mat., Mekh., 1983, no. 4, pp12–14
4. Aleshin S.V., On superpositions of automata mappings, Cybernetics, Kiev, 1975, | 1, 29–34.
5. Aleshin S.V., Finite automata and Burnside’s problem for periodic groups, Math. Notes, 11:3 (1972), 199–203
6. Arnol’d,V. I. Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Mathematical Surveys(1963),18(6):85 Available at: http://dx.doi.org/10.1070/RM1963v018n06ABEH001143
7. Yu. A. Bahturin, Identities in the universal enveloping algebra for a Lie superalgebra, Math. USSR-Sb., 55:2 (1986), 383–396
8. Babenko, I K. Problems of growth and rationality in algebra and topology. Russian Mathematical Surveys (1986), 41(2):117 Available at: http://dx.doi.org/10.1070/RM1986v041n02
9. ABEH003243
10. Belov A.Ya., Classification of Weakly Noetherian Monomial algebras Fund. and app. mat. - 1995 .– 1., vol,1, | 4, –p. 1085-1089.
11. Belov, A.Ya., Borisenko, V.V. & Latyshev, V.N. Monomial algebras. J Math Sci 87, 3463–3575 (1997). Available at: https://doi.org/10.1007/BF02355446
12. Belov, A.Ya. Rationality of Hilbert series with respect to free algebras, Uspekhi Mat. Nauk 52 (1997), no. 2(314), 153–154 (Russian); English transl., Russian Math. Surveys 52 (1997), no.
13. , 394–395. MR 1480146, https://doi.org/10.1070/RM1997v052n02ABEH001786
14. Belov, A.Ya. On a Shirshov basis of relatively free algebras of complexity 𝑛, Math. USSR-Sb., 63:2 (1989), 363–374
15. Belov, A.Ya. Height theorem for Jordan and Lie PI -algebras. (Russian) Sib. school for versatile algebraic systems. Abstracts. — Barnaul, 1988, pp. 12-13.
16. Belov , A. Ya. , Kondakov , G. V.. Inverse problems of symbolic dynamics. (Russian) Fundamental and Applied Mathematics 1 ( 1995 ) : 71 – 79 .
17. Golod E. S., Shafarevich I. R. About the tower of class fields. (Russian) Izv. Academy of Sciences of the USSR. Ser. mat., 964, v. 28, no. 2, pp. 261-272.
18. Golod, E. S. On nil-algebras and finitely approximable 𝑝-groups. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 28 1964 273–276.
19. Grigorchuk R. I. On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, 271:1 (1983), 30–33
20. Grigorchuk, R. I. Degrees of growth of finitely generated groups, and the theory of invariant means., Mathematics of the USSR-Izvestiya(1985),25(2):259
21. Grigorchuk, R. I. On the Hilbert–Poincar´e series of graded algebras associated with groups, Math. USSR-Sb., 66:1 (1990), 211–229
22. Dniester notebook: operational information. collection — 4th ed. — Novosibirsk: ed. in - that mat. SO AN SSSR, 1993, 73 pages
23. A. Kanel-Belov, I. Melnikov, I Mitrofanov, On cogrowth function of algebras and its logarithmical gap, Comptes Rendus - S´erie Math´ematique., 2021. (to appear)
24. Kharitonov, M.I. Piecewise periodicity structure estimates in Shirshov’s height theorem. Moscow Univ. Math. Bull. 68, 26–31 (2013). https://doi.org/10.3103/S0027132213010051
25. Kharitonov, M.I. Two-sided estimates for essential height in Shirshov’s Height Theorem. Moscow Univ. Math. Bull. 67, 64–68 (2012). https://doi.org/10.3103/S0027132212020052
26. Kharitonov, M.I., Estimates in shirshov height theorem, Candidate Sceince Thesis, 2015
27. Petr Lavrov, Number of restrictions required for periodic word in the finite alphabet. arXiv:1209.0220
28. Bogdanov, Ilya I.; Chelnokov, Grigory R. The maximal length of the period of a periodic word defined by restrictions. arXiv:1305.0460
29. Mikhail Kharitonov, Estimates on the number of partially ordered sets. arXiv:1307.1886 28. Kargapolov M.I. Yu.I. Merzlyakov Foundations of group theory, (russian) (3rd ed., Science, 1982) 288p.
30. Ivanov-Pogodaev, I.A. Finite Gr¨obner basis algebra with unsolvable problem of zero divisors., J Math Sci 152, 191–202 (2008). https://doi.org/10.1007/s10958-008-9062-y
31. Katok A. B., Stepin A.M., Approximations in ergodic theory Russian Mathematical Surveys (1967), 22(5):77
32. А.Т. Колотов, Апериодические последовательности и функции роста в алгебрах // Алгебра и логика, 20 (1981), 138–154, 250.
33. Kolotov A.T., Algebras and semigroups with periodic growth function, Algebra and Logic, 19 (1980), 659–668, 745.
34. Kolotov A.T. On an upper bound for the height in finitely generated algebras with identities. Sibirsk. mat. Zh., 1982, vol. 23, No. 1, p. 187–189.
35. Kostrikin A. I. Around Burnside. — M .: Nauka, 1986, 232 pp. (russian)
36. Kurosh A. G., ]it Problems in ring theory which are related to the Burnside problem for periodic groups, Izv. Akad. Nauk SSSR, Ser. Mat., 5, 233–241 (1941).
37. Kudryavtse V. B, Aleshin S. V., Podkolzin A. S., Introduction to the Theory of Automata, Moscow, Nauka, 1985.320 pp.
38. Latyshev V. N., On Regev’s theorem on indentities in a tensor product of PI-algebras, Usp. Mat. Nauk, 27, 213–214 (1972).
39. R. Lindon and P. Schupp, Combinatorial group theory, Moscow, Mir, 1980.
40. Mikhalev A. A. A. I. Shirshov’s Composition Technique in Superalgebras Lie (noncommutative Gr¨obner bases). Tr. seminar them. I. G. Petrovsky, 1994, vol. 18,
41. Mishchenko, S.P. A variant of the height theorem for Lie algebras. Mathematical Notes of the Academy of Sciences of the USSR 47, 368–372 (1990). https://doi.org/10.1007/BF01163820
42. Ivan Mitrofanov On uniform recurrence of HD0l systems, arXiv:1111.1999 20 pages.
43. Ivan Mitrofanov, A proof for the decidability of HD0L ultimate periodicity. arXiv:1110.4780 33 pages.
44. Mitrofanov I. V., it Algorithmic problems associated with morphic sequences, Candidate Sceince Thesis 2017
45. Olshansky A. Yu. Geometry of defining relations in groups. ser. Modern algebra. Moscow: Nauka, 1989, 447 pp.
46. V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR, 168 (1966), 1009–1011 (Russian) Math-Net.Ru MathSciNet ; English translation: Soviet Math. Dokl., 7 (1966), 776–779
47. Pchelintsev S. V., A theorem on height for alternative algebras, Math. USSR-Sb., 52:2 (1985), 541–551
48. A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville (1981).
49. Sinai Ya.G., Introduction to ergodic theory, Moscow: FASIS, 1996.144 p.
50. Trofimov V. I. On one criterion of the exponential growth of graded algebras. In the book: Investigation of algebraic systems by the properties of their subsystems. — Sverdlovsk, 1980,
51. p. 152-160.
52. Ufnarovskii V. A., An independence theorem and its consequences, Math. USSR-Sb., 56:1 (1987), 121–129
53. Ufnarovsky V.A. Combine. and asymp. methods in algebra., Summary science and tech. Seryu Sovr. Probl. Mat. Fund. direction M. VINITI. 1990-57, pp. 5-177. (RZhMat, 1990).
54. Chekanu G. P. On the local finiteness of algebras. Mat. issled. (Kishinev), 1988, N 105, pp. 153-171.
55. Chekanu G. P. On Shirshov’s height theorem. 𝑋𝐼𝑋 All algebras. Conf .: Abstracts 𝐼. — Lviv, 1987, p. 306.
56. Chelnokov G. R. , On the number of restrictions defining a periodic sequence. Model and analysis of inform. systems, 14:2 (2007), 12–16, in Russian
57. Shirshov A. I., On some nonassociative nil-rings and algebraic algebras, Mat. Sb.,41, No. 3, 381–394 (1957).
58. Shirshov A. I., On rings with identity relations,Mat. Sb.,43, No. 2, 277–283 (1957).
59. Shirshov A. I., O svobodnykh koltsakh Li, Matem. sb., 45:2 (1958), 113–122
60. Shirshov A. I., On bases of free Lie algebras, Algebra Logika, 1:1 (1962), 14–19
61. A.Aberkane, Words whose complexity satisfies lim 𝑝(𝑛)/𝑛 = 1 , Theor. Comp. Sci., 307, (2003), 31-46.
62. P.Ambro z, L. H´akov ´ , E. Pelantov´a, Properties of 3iet preserving morphisms and their matrices, ProceedingsWORDS 2007, Eds. P. Arnoux, N. Bedaride, J. Cassaigne, (2007), 18–24.
63. P. Arnoux, Un exemple de semi-conjugaison entre un ´echange d’intervalles et une translation sur le tore, Bull. Soc. Math. France 116 (1988), 489–500.
64. P. Arnoux and G. Rauzy [1991], Representation geometrique des suites the complexite 2𝑛+1, Bull. Soc. Math. France 119, 199-215.
65. Arnoux, Pierre; Mauduit, Christian; Shiokawa, Iekata; Tamura, Jun-ichi. Complexity of sequences defined by billiard in the cube. Bull. Soc. Math. France 122 (1994), no. 1, 1–12.
66. P.Bal´azi, Infnite Words Coding Three-Interval Exchange, diploma work CTU (2003).
67. P.Bal´azi, Substitution properties of ternary words coding 3- interval exchange, Proceedings WORDS 2003, Eds. T. Harju and J. Karhumдaki, (2003), 119-124.
68. P. Bal´azi, Z. Mas´akov´a, E. Pelantov´a, Characterization of substitution invariant 3iet words, submitted to Integers // arXiv:0709.2638, (2007).
69. A.Belov, Т. Gateva-Ivanova, Radicals of monomial algebras, Proceedings of Taiwan-Moscow Algebra Workshop, – C. 159-169, 1994.
70. A. Belov. Some estimations for nilpotence of nil-algebras over a field of an arbitrary characteristic and height theorem, Communications in algebra, 20 (10):2919–2922, 1992.
71. Belov, A., Michailov R. Free subalgebras of Lie algebras close to nilpotent. Groups, Geometry, and Dynamics, No 1, 2010, pp. 15–29.
72. Belov, A.; Kontsevich M.L. Jacobian and Dixmier Conjectures are stably equivalent. Moscow Mathematical Journal. Vol. 7 (2007) (A special volume dedicated to the 60-th anniversary of A.G.Khovanskii), No 2, pp 209–218.
73. Belov, A.Y. Linear Recurrence Equations on a Tree. Math Notes 78, 603–609 (2005).
74. https://doi.org/10.1007/s11006-005-0163-3
75. Kanel–Belov A., M.Kharitonov. Subexponential estimates in the height theorem and estimates on numbers of periodic parts of small periods. Fundam. Prikl. Mat. (Fundamental and Applied
76. Mathematics), 2011/2012, Vol. 17, No 5, p. 21–54 ;
77. Kanel–Belov A., Rowen Louis H.; Vishne, Uzi Full exposition of Specht’s problem. Serdica Math. J. 38 (2012), 313–370.
78. Belov A. Ya., Kharitonov M. I., Subexponential estimates in Shirshov’s theorem on height, Sb. Math., 203:4 (2012), 534–553
79. Kanel–Belov A., Eli Aljadeff. Representability and Specht problem for 𝐺-graded algebras. Adv. in Mat., vol. 225, No 5, 2010, pp. 2391–2428.
80. Kanel–Belov A., Rowen Louis H.; Vishne, Uzi Structure of Zariski-closed algebras. Trans. Amer. Math.Soc., Vol.362, No 9, Pages 4695–4734.
81. Latyshev, V.N. Combinatorial generators of the multilinear polynomial identities. J Math Sci 149, 1107–1112 (2008). https://doi.org/10.1007/s10958-008-0049-5
82. Durand, Fabien. Decidability of uniform recurrence of morphic sequences. arXiv:1204.5393
83. Durand, Fabien. Decidability of the HD0L ultimate periodicity problem. arXiv:1111.3268
84. Fabien Durand, Samuel Petite, Unimodular pisot substitutions and domain exchanges. arXiv: 1408.2110 [math.DS]
85. A.Ya. Belov, I. Mitrofanov Periodicity of Rauzy scheme and substitutional systems, arXiv: 1107.0185
86. A.Ya.Belov, G.V.Kondakov, I.Mitrofanov. Inverse problems of symbolic dynamics. Banach Center Publ. 94 (2011), 43–60.
87. Belov A. J., Ivanov I.A. Construction of semigroups with some exotic properties. Acta Appl. Math. 85 (2005), no. 1-3, 49–56.
88. Berele, Allan. Applications of Belov’s theorem to the cocharacter sequence of p.i. algebras. J. Algebra 298 (2006), no. 1, 208–214.
89. Kanel–Belov A., Rowen Louis H.; Vishne, Uzi Full quivers of representations of algebras. Trans. Amer. Math. Soc. 364 (2012), 5525–5569.
90. Kanel–Belov A., Eli Aljadeff. Hilbert series of 𝑃𝐼-relative free 𝑔-graded algebras are rational functions. Bull. London Math. Soc., (2012), 44(3): 520–532, doi:10.1112/blms/bdr116
91. Kanel–Belov A., Malev S., Rowen Louis H. The images of non-commutative polynomials evaluated on 2 × 2 matrices. Proc. Amer. Math. Soc. 140 (2012), 465–478 (posted in
92. arxiv.:1005.0191v2).
93. Kanel–Belov A., Rowen Louis H.; Vishne, Uzi Application of full quivers of representations of algebras, to polynomial identities. Comm. in Algebra, vol. 39: 4536–4551, 2011.
94. Kanel–Belov A., Rowen Louis H.; Vishne, Uzi Normal bases of 𝑃𝐼-algebras. Adv. in Appl. Math. 37 (2006), no. 3, 378–389.
95. Kanel–Belov A., Rowen Louis H. Perspectives on Shirshov’s Height Theorem. in book: selected papers of A.I.Shirshov, Birkh¨user Verlag AG (2009), 3–20.
96. Kanel–Belov, Alexei; Rowen, Louis Halle Combinatorial aspects in polynomial identities. Research Notes in Mathematics, 9. A K Peters, Ltd., Wellesley, MA, 2005. xxii+378
97. Belov, A. Local finite basis property and local representability for varieties of associative rings. Doclady Academii Nauk (Reports (CR) of Acad. of Sci. of Russia). 2010, v.432, No 6, pp.
98. –731, (Doklady Mathematics), Engl. transl.: 2010, Vol. 81, No. 3, pp. 458–461.
99. Belov, A. Local finite basis property and local representability of varieties of associative rings. Izvestia of Russian Academia of science, No 1, 2010, pp. 3–134. English transl.: Izvestiya:
100. Mathematics, vol. 74, No 1, pp. 1–126.
101. A.L. Chernyat’ev, Balanced Words and Dynamical Systems // Fundamental and Applied Mathematics, 2007, vol. 13, No 5, pp. 213–224
102. A.L. Chernyat’ev, Words with Minimal Growth Function // Vestnik Mosk. Gos. Univ., 2008.
103. A.Ya. Belov and A.L. Chernyat’ev, Describing Sturmian Words over an 𝑛-letter Alphabet // Math. Met. Appl. IV, MGSU, 1999, pp 122–128.
104. Belov A. J. About Non-Specht varieties. Fund. i prikl. matem., 1999, vol. 5, N 1, pp. 47–66.
105. Belov A. J. Counterexamples to the Specht problem. Mat. sb., 1999, vol. 191, N 3, p.13–24.
106. (Engl. transl. Sbornik: Mathematics 191:3, 329–340.)
107. A.Ya. Kanel-Belov, A.L. Chernyat’ev. Describing the set of words generated by interval exchange transformation. Comm. in Algebra, Vol. 38, No 7, July 2010, pages 2588–2605.
108. G.M. Bergman, A note on growth functions of algebras and semigroups, Research Note, University of California, Berkeley, 1978.
109. V. Berth´e, S. Ferenczi, L.Zamboni Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, AMS Contemporary Math. 385 (2005), p. 333-364.
110. J. Berstel, P. S´e´ebold, Sturmian words, in: M. Lothaire (Ed.) Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, Vol. 90, Cambridge University
111. Press, Cambridge, 2002 (Chap. 2).
112. J.Berstel, Resent results on Sturmian words, Developments in language theory II, 13-24, World Scientific, 1996.
113. J.Cassaigne. Special factors with linear subword complexity. Developments in language theory, II (Magdeburg, 1995), 25-34, World Sci. Publ., River Edge, NJ, 1996.
114. Cassaigne, J. (F-CNRS-IML); Hubert, P. [Hubert, Pascal] (F-CNRS-IML); Troubetzkoy, S. (F-CNRS-IML) Complexity and growth for polygonal billiards. Ann. Inst. Fourier (Grenoble)
115. (2002), no. 3, 835–847.
116. X. Droubay, G. Pirillo, Palindromes and sturmian word, Theroret. Comput. Sci., 223:73-85, 1999.
117. X.Droubay, J.Justin, G.Pirillo, Episturmian words and some construction of de Luca and Rauzy, Theoret. Comp. Sci.,(2001) 539–553.
118. Drensky V. Codimensions of 𝑇-ideals and Hilbert series of relatively free algebras. J. Algebra, 1984, vol 91, no 1, pages 1–17.
119. Drensky V. Free algebras and PI-algebras. Springer, 2000, Pages 271.
120. H. Furstenberg. Poincar´e reccurence and number theory. Bull. Amer. Math. Soc., 5:211-234, 1981.
121. R. L. Graham, Covering the Positive Integers by disjoints sets of the form {[𝑛𝛼 + 𝛽] : 𝑛 = 1, 2, . . .}, J. Combin. Theory Ser A15 (1973) 354-358.
122. P. Hubert, Well balanced sequences, Theoret. Comput. Sci. 242 (2000) 91Ц108.
123. S. Ferenczi, C. Holton, L. Zamboni, The structure of three-interval exchange transformations II: a combinatorial description of the trajectories J. Anal. Math. 89 (2003), p. 239-276.
124. Ferenczi, L. Zamboni, A new induction for symmetric 𝑘-interval exchange transformations and distances theorem, submitted, Available at: http://iml.univ-mrs.fr/ ferenczi/fz1.pdf
125. Ferenczi, L. Zamboni, Examples of 4-interval exchange transformations, preprint (2006),
126. Available at: http://iml.univ-mrs.fr/ ferenczi/fz2.pdf
127. Ferenczi, L. Zamboni, Languages of k-interval exchange transformations, submitted, Available at: http://iml.univ-mrs.fr/ ferenczi/fz3.pdf
128. Giambruno A., Zaicev M. Exponential Codimentional Growth of PI-algebras: an exact estimate. Adv.in Math., 1999, vol 142, pages 221–243.
129. Giambruno A., Zaicev M. Minimal varieties of exponential growth. Adv.in Math., 142, 1999, vol 142, pages 221–243.
130. Gromov M. Groups of polynomial growth and extending maps. Publ. Math. inst. hautes etud. sci., 1981, vol. 53, pages 53–73.
131. Kemer А. R. Multilinear identities of the algebras over a field of characteristic 𝑝. Intern. J. of Algebra and Computations., 1995, vol 5, no 2, pages 189–197.
132. Krause, G.; Lenagan, T.H. Growth of algebra and Gelfand-Kirillov dimension, Research Notes in Math., Pitman, London, 1985.
133. A. de Luca, Sturmian words: structure, combinatorics and their arithmetics, Theoret. Comp. Sci., 183, (1997), 45-82.
134. A. de Luca and S. Varricchio. Combinatorial properties of uniformly recurrent words and an application to semigroups. // Inter. J. Algebra Comput., 1(2):227–246, 1991.MR 92h:20084.
135. Application of Adic representations in the investigations of metric, spectral and topological properties of dynamical systems. Sanct-Petersburg, 1995, 176 pages.
136. M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, MA, 1983, Vol. 17.
137. M. Lothaire, Algebraic combinatorics on words. A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux,
138. Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques
139. Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski. With a preface by Berstel and Perrin. Encyclopedia of Mathematics and its Applications, 90.
140. Cambridge University Press, Cambridge, 2002, 504 pp.
141. Mauduit, C. Substitutions, arithmetic and finite automata: an introduction. Substitutions in dynamics, arithmetics and combinatorics, 35-52, Lecture Notes in Math., 1794, Springer,
142. Berlin, 2002, 37B10 (11B85) PDF Clipboard Series Chapter
143. Milnor J. Problem 5603. American Mathematical monthy, 1968, vol. 75, No 6, pages 675–686.
144. M. Morse and G. A. Hedlund [1940], Symbolic dynamics II. Sturmian trajectories, // Amer. J. Math. 62, 1-42.
145. G. Rauzy, Nombres algebriques et substitutions, Bull. Soc. Math. France, 110 (1982), p. 147– 178.
146. G. Rauzy, Mots infnis en arithmetique, in: Automata on Infnite Words, Ecole de Printemps d’Informatique Thfeorique, Le Mont Dore, May 1984, ed. M. Nivat and D. Perrin, Lecture
147. Notes in Computer Science, vol. 192, Springer-Verlag, Berlin etc., pp. 165-171, 1985
148. G. Rauzy, Suites ´a termes dans un alphabet fini, In S´emin. Th´eorie des Nombres, p. 25-01-25-16, 1982-1983, Expos´e No 25.
149. G. Rauzy, ´ Echanges d’intervalles et transformations induites, (in French), Acta Arith. 34 (1979), p. 315-328.
150. G. Rozenberg and A. Salomaa The Mathematical Theory of L Systems, Academic Press, New York etc., 1980
151. G.Rote, Sequences with subword complexity 2𝑛, J. Number Theory 46 (1994) 196–213.
152. R.Tijdeman, Decomposition of the integers as a direct sum of two subsets// in: Number Theory, ed. by S. David, Number Theory Seminar Paris 1992-93, Cambridge University Press, (1995), 261-276
153. R.Tijdeman, Fraenkel’s conjecture for six sequences, Discrete Mathematics, Volume 222, Issue 1-3, 223 - 234, 2000
154. L. Vuillon, Balanced words, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), no. 5, 787-805
155. L.Vuillon, A characterization of Sturmian word by return words, European Journal of Combinatorics (2001) 22, 263-275.
156. Vershik, A. M. The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 223 (1995), Teor. Predstav. Din. Sistemy, Kombin. i Algoritm. Metody. I, 120–126, 338; translation in J. Math. Sci. (New York) 87 (1997), no. 6, 4054–4058.
157. Vershik, A. M.; Livshits, A. N. Adic models of ergodic transformations, spectral theory, substitutions, and related topics. Representation theory and dynamical systems, 185–204, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992.
158. Belov A. J. Rationality of Hilbert series with respect to free algebras., Uspehi mat. nauk, 1997, vol. 55, N 2, p. 153–154. translation in Russian Math. Surveys 52, 1997, N 2, 394–395
159. H.Weyl, ¨ Uber der gleichverteilung von zahlen mod 1, Math. Ann., v. 77, 313-352, 1916.
Review
For citations:
Reshetnikov I.A. Combinatorics on words, facrordynamics and normal forms. Chebyshevskii Sbornik. 2021;22(2):202-235. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-202-235