Preview

Chebyshevskii Sbornik

Advanced search

Mathematical regularities of changes in the characteristics of the friction process of a porous composite material based on copper containing oil with graphene particles

https://doi.org/10.22405/2226-8383-2021-22-1-390-402

Abstract

The paper presents the results of a study of the sliding friction processes of a porous copper-based material impregnated with lubricating oil with dispersed particles of fluorinated graphene. Mathematical regularities of changes in the characteristics of the friction interaction are established. It is shown that the regularities of changes in the average friction force have a
sigmoid-step character. Experimental results have been obtained showing that with an increase in the concentration of aggregates from flakes of fluorinated graphene in the lubricating oil,
the average friction force and coefficient of friction decrease, while a good anti-friction effect is observed. It is shown that the average work of the friction force, and consequently the energy
losses due to friction, when adding 0.01% of aggregates from fluorinated graphene flakes to the lubricating oil decreases by 3721 j, and when adding 0.1% — by 4098 j. It was found that the
average coefficient of friction when adding 0.01% of fluorinated graphene flake aggregates to the lubricating oil decreases by 27%, and when adding 0.1% — by 30%.

About the Authors

Alexander Dzhalyulyevich Breki
Peter the Great St. Petersburg Polytechnic University, Institute of Problems of Machine Science of the Russian Academy of Sciences
Russian Federation

сandidate of technical sciences, associate professor



Sergey Georgievich Chulkin
Saint Petersburg State Marine Technical University
Russian Federation

doctor of technical sciences, professor



Alexey Georgievich Kolmakov
IMET RAS
Russian Federation

doctor of technical sciences, professor



Olga Vladimirovna Kuzovleva
Russian StateUniversity of justice
Russian Federation

candidate of technical Sciences, docent



Alexandr Evgenyevich Gvozdev
Tula State Pedagogical University L.N. Tolstoy
Russian Federation

doctor of engineering, professor



Evgeny Vladimirovich Mazin
LLC NPO «Graphene materials»
Russian Federation


Alexey Mikhaylovich Kuzmin
JSC «TSKBM»
Russian Federation


References

1. Solov’ev M.E., Raukhvarger A.B., Savinsky N.G., Irzhak V.I. 2017, «Modeling and synthesis of graphene oxide from thermally expanded graphite», Journal of General chemistry, Vol. 87.

2. No. 4. pp. 677-683.

3. Novoselov K.S., Geim A.K., Morozov S.V. et. al. 2004, «Electric Field Effect in Atomically Thin Carbon Films», Science, V. 306. № 5696. pp. 666–669.

4. Tkachev S.V., Buslaeva E.Yu., Gubin S.P. 2011, «Graphene – a new carbon nanomaterial», Inorganic material, Vol. 47. No. 1. pp. 5-14.

5. Tkachev S.V., Buslaeva E.Yu., Naumkin A.V., Kotova S.L., Laure I.V., Gubin S.P. 2012, «Graphene obtained by reduction of graphene oxide», Inorganic material, Vol. 48. No. 8. pp.

6.

7. Geim A.K., Novoselov K.S. 2007, «The Rise of Graphene», Nature Mater. V. 6. № 3. P. 183–191.

8. Gubin S.P., Tkachev S.V. 2012, Graphene and related carbon nanoforms. Moscow. Book house «Librocom». 104 pp.

9. Volokitin A.I. 2011, «Quantum friction and grapheme», Nature. No. 9 (1153). pp. 13-21.

10. Legkonogikh N.I. 2020, «The lubricating ability of graphene when used in friction pairs «steeliron » and «steel-bronze»», Computer-aided design in mechanical Engineering, No. 8. pp. 48-50.

11. Novikova A.A., Burlakova V.E., Varavka V.N., Uflyand I.E., Drogan E.G., Irkha V.A. 2019, «Influence of glycerol dispersions of graphene oxide on the friction of rough steel surfaces»,

12. Journal of Molecular Liquids, 284, pp.1-11.

13. Berman D., Erdemir A., Sumant A.V. 2013, «Few layer graphene to reduce wear and friction on slidingsteel surfaces», Carbon, 54, pp. 454-459.

14. Restuccia P., Righi M.C. 2016, «Tribochemistry of graphene on iron and its possible role in lubrication of steel», Carbon, 106, pp. 118-124.

15. Obraztsova E.A., Osadchy A.V., Obraztsova E.D., Lefrant S., Yaminsky I.V. 2008, «Statistical Analysis of Atomic Force Microscopy and Raman Spectroscopy Data for Estimation of Graphene Layer Numbers», Phys. Stat. Sol. B. V.245 (№10) pp. 2055-2059.

16. Breki A., Nosonovsky M. 2018, «Ultraslow frictional sliding and the stick-slip transition», Applied Physics Letters, Т. 113. № 24. pp. 241602.

17. Breki A.D., Gvozdev A.E., Kolmakov A.G. 2019, «Semiempirical mathematical models of the pivoting friction of SHKH15 steel over R6M5 steel according to the ball–plane scheme with consideration of wear», Inorganic Materials: Applied Research, Т. 10. № 4. pp. 1008-1013.

18. Breki A.D., Vasilyeva E.S., Tolochko O.V., Didenko A.L., Nosonovsky M. 2019, «Frictional properties of a nanocomposite material with a linear polyimide matrix and tungsten diselinide

19. nanoparticle reinforcement», Journal of Tribology, Т. 141. № 8. pp. 082002.

20. Breki A.D., Kolmakov A.G., Gvozdev A.E., Sergeev N.N. 2019, «Investigation of the pivoting friction of SHKH15 steel over R6M5 and 10R6M5-MP steel with the use of mathematical

21. modeling», Inorganic Materials: Applied Research, Т. 10. № 4. pp. 927-932.

22. Breki A.D., Gvozdev A.E., Kolmakov A.G., Starikov N.E., Provotorov D.A., Sergeyev N.N., Khonelidze D.M. 2017, «On friction of metallic materials with consideration for superplasticity

23. phenomenon», Inorganic Materials: Applied Research, Т. 8. № 1. pp. 126-129.

24. Breki A.D., Gvozdev A.E., Kolmakov A.G. 2017, «Application of generalized pascal triangle for description of oscillations of friction forces», Inorganic Materials: Applied Research, Т. 8. №

25. pp. 509-514.

26. Breki A., Nosonovsky M. 2018, «Einsteins viscosity equation for nanolubricated friction», Langmuir: the ACS journal of surfaces and colloids, Т. 34. № 43. pp. 12968-12973.

27. Rebrova I.Yu., Chubarikov V.N., Dobrovolsky N.N., Dobrovolsky M.N., Dobrovolsky N.M. 2018, «On classical number-theoretic grids», Chebyshev collection, Vol. 19. No. 4 (68). pp. 118-176.

28. Dobrovolsky N.N., Dobrovolskaya L.P., Seregina N.K., Bocharova O.E. 2016, Algorithms for calculating optimal coefficients. Tula: publishing house of Tula state pedagogical University named after L.N. Tolstoy, 223 pp.

29. Dobrovolskaya L.P., Shelobaev S.I. 2019, «Number-theoretic method in econometrics», Algebra, number theory and discrete geometry: modern problems, applications and problems of history: materials of the XVI International conference dedicated to the 80th anniversary of the birth of Professor Michel DEZ. Tula: Tula state pedagogical University named after L.N. Tolstoy, pp. 280-283.

30. Nikitin A.N., Rusakova E.I., Parkhomenko Eh.I., Ivankina T.I., Dobrovol’skij N.M., 1988, Reconstruction of Paleotectonic Stresses Using Data on Piezoelectric Texstures of Rocks»,

31. Izvestiya Earth Physics, 24:9, pp. 728–734.


Review

For citations:


Breki A.D., Chulkin S.G., Kolmakov A.G., Kuzovleva O.V., Gvozdev A.E., Mazin E.V., Kuzmin A.M. Mathematical regularities of changes in the characteristics of the friction process of a porous composite material based on copper containing oil with graphene particles. Chebyshevskii Sbornik. 2021;22(1):390-402. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-390-402

Views: 323


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)