Smooth manifold of one-dimensional lattices
https://doi.org/10.22405/2226-8383-2020-21-3-165-185
About the Authors
Elena Nikolaevna SmirnovaRussian Federation
senior lecturer of the Department of algebra and discrete mathematics
Olga Alexandrovna Pikhtilkova
Russian Federation
Candidate of Physics and Mathematics Sciences, docent,
associate professor of the department of higher mathematics-2
Nikolai Nikolaevich Dobrovol’skii
Russian Federation
candidate of physical and mathematical sciences, associate professor of the department of general and theoretical physics, associate Professor of algebra, mathematical analysis and geometry
Irina Yur'evna Rebrova
Russian Federation
candidate of physical and mathematical sciences, associate professor, dean of the Faculty of Mathematics, Physics and Informatics
Nikolai Mihailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professor, head of the department of algebra, mathematical analysis and geometry
References
1. Аkramov, U. А. 1990, ``The isolation theorem for forms corresponding to purely real algebraic fields``, \textit{Аnaliticheskaya teoriya chisel i teoriya funktsij. 10 Zap. nauchn. sem. LOMI}, no. 185, pp. 5–12.
2. Arnold V. I., 1975, ``Ordinary differential equations'', M .: Science, 240~p.
3. Babenko, K.I. 1986, Osnovy chislennogo analiza [Fundamentals of numerical analysis], Nauka, Moscow, Russia.
4. Vejl', G. 1947, \textit{Аlgebraicheskaya teoriya chisel [Algebraic number theory]}, Gosudarstvennoe izdatel'stvo inostrannoj literatury, Moscow, Russia.
5. Delone, B. N. \& Faddeev, D. K. 1940, ``Theory of irrationalities of the third degree``, \textit{Trudy matematicheskogo instituta imeni V.А. Steklova }(Proceedings of the Steklov Institute of Mathematics), vol. 11, pp. 3–340.
6. Dobrovol'skaya, L. P., Dobrovol'skii, N. M. \& Simonov, А.S. 2008, “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, vol. 9, no. 1(25), pp. 185–223.
7. Dobrovol'skii, N. M. 1984, “Evaluation of generalized variance parallelepipedal grids”, Dep. v VINITI, no. 6089–84.
8. Dobrovol'skii, N. M. 1984, “On quadrature formulas in classes $E^\alpha_s(c)$ and $H^\alpha_s(c)$”, Dep. v VINITI, no. 6091–84.
9. {Dobrovolskiy~N.~M.} Hyperbolic zeta function of lattices. Dep. in VINITI 08.24.84, no.~6090-84.
10. {Dobrovolsky~N.~M.} ``Multidimensional number-theoretic grids and lattices and their applications to approximate analysis'', Sb. IV International conference \ glqq Modern problems of number theory and its applications \ grqq \ dedicated to the 180th anniversary of P.~L.~Chebyshev and 110th anniversary of I.~M.~Vinogradov. Tula, 10 --- 15 September, 2001 Actual problems Ch.~I. M. MGU, 2002. p.~54 --- 80.
11. Dobrovol'skii, N. M. \& Manokhin, E.V. 1998, “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 4, no. 3, pp. 56–67.
12. Dobrovol’skii N.M., Manokhin E.V., Rebrova I. Yu., Roshchenya A.L., 2001, “On the continuity of the zeta function of a grid with weights”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 7, no. 1, pp. 82–86.
13. Dobrovol'skij, N.M., Rebrova, I.YU. \& Roshhenya, А.L. 1998, ``Continuity of the hyperbolic zeta function of lattices``, \textit{Matematicheskie zametki} (Mathematical Notes), vol. 63, no. 4, pp. 522–526.
14. N. M. Dobrovol'skii, A. L. Roshchenya, “Number of lattice points in the hyperbolic cross”, Math. Notes, 63:3 (1998), 319–324.
15. {Dobrovolskiy~N.~M., Roshchenya~A.~L.}, 1995, ``On the number of points of a lattice in a hyperbolic cross'', Algebraic, probabilistic, geometric, combinatorial and functional methods in number theory: Collected tez. report II Int. conf. Voronezh, p.~53.
16. {Dobrovolskii~N.~M., Roshchenya~A.~L.}, 1996, ``On the analytic continuation of the hyperbolic zeta-function of rational lattices'', Modern problems of number theory and its applications: Collection of articles. thesis. report III Int. conf. Tula, p.~49.
17. {Dobrovol'skii~N.~M., Roshchenya~A.~L.}, 1996, ``On the continuity of the hyperbolic zeta-function of lattices'', Izv. Toole. state un-that. Ser. Mathematics. Mechanics. Computer science. T.~2. Issue~1. Tula: Publishing house of Tula State University, p.~77 --- 87.
18. Kassels, D. 1965, \textit{Vvedenie v geometriyu chisel}, [Introduction to the geometry of numbers], Mir, Moscow, Russia.
19. A. N. Kormacheva, 2019, "Approximation of quadratic algebraic lattices by integer lattices --- II"\,, {\it Che\-by\-shev\-skii sbornik}, vol.~\tom, no.~\iss, pp.~\pageref{Kormacheva}--\pageref{KormachevaEnd}.
20. Korobov, N.M. 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.
21. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.
22. Lokutsievskij, O. V. \& Gavrikov, M. B. 1995, Nachala chislennogo analiza [The beginning of numerical analysis], TOO “Yanus”, Moscow, Russia.
23. N. V. Maksimenko, 2020, "The space of Dirichlet series to multivariate lattices and the algebra of
24. Dirichlet series of grids, repetitive multiplication"\,\!, Chebyshevskii sbornik, vol. 21, no. 1, pp.~233–246.
25. Rebrova, I. YU. 1998, ``The continuity of the generalized hyperbolic zeta lattice function and its analytic continuation``, \textit{Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika}, vol. 4, no. 3, pp. 99–108.
26. Skubenko, B. F. 1981, ``The isolation theorem for decomposable forms of purely real algebraic fields of degree $n>3$``, \textit{Аnaliticheskaya teoriya chisel i teoriya funktsij}. 4 Zap. nauchn. sem. LOMI, no.112, pp. 167–171.
27. Skubenko, B. F. 1981, ``On the product of $n$ linear forms of $n$ variables``, \textit{Trudy MIАN SSSR}, no.158, pp. 175–179.
28. Skubenko, B. F. 1982, ``To joint approximations of algebraic irrationalities``, \textit{Tselochislennye reshetki i konechnye linejnye gruppy, Zap. nauchn. sem. LOMI}, pp. 142–154.
29. Skubenko, B. F. 1987, ``Cyclic sets of points and lattices``, \textit{Аnaliticheskaya teoriya chisel i teoriya funktsij. 8 Zap. nauchn. sem. LOMI}, pp. 151–158.
30. Skubenko, B. F. 1988, ``The minima of a decomposable cubic form in three variables``, \textit{Аnaliticheskaya teoriya chisel i teoriya funktsij}. 9 Zap. nauchn. sem. LOMI, no.168, pp. 151–158.
31. Skubenko, B. F. 1990, ``Minima of decomposable forms of degree $n$ of $n$ variables for $n>3$``, \textit{Modulyarnye funktsii i kvadratichnye formy. 1 Zap. nauchn. sem. LOMI}, no.183, pp. 142–154.
32. E. N. Smirnova, O. A. Pikhtilkova, N.~N.~Dobrovolsky, N.~M.~Dobrovolsky., 2017, ``Algebraic lattices in the metric space of lattices'', Chebyshev sb., vol.~18, no.~4, p.~326--338.
33. Warner F. Foundations of the theory of smooth manifolds and Lie groups. --- M .: Mir, 1987. --- 304~p.
34. Frolov, K. K. 1976, ``Estimates from above of the error of quadrature formulas on function classes``, \textit{DАN SSSR}, no.4, pp. 818–821.
35. Frolov, K. K. 1979, ``Quadrature formulas on function classes``, Ph.D. Thesis, Computing Center of the Russian Academy of Sciences of the USSR, Moscow, Russia.
Review
For citations:
Smirnova E.N., Pikhtilkova O.A., Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M. Smooth manifold of one-dimensional lattices. Chebyshevskii Sbornik. 2020;21(3):165-185. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-165-185