On Langlands program, global fields and shtukas
https://doi.org/10.22405/2226-8383-2020-21-3-68-83
About the Author
Nikolay Mihaylovich GlazunovUkraine
doctor of physical and mathematical Sciences, Professor
References
1. Langlands R. P. On the notion of an automorphic representation, Automorphic Forms, Representations,and L-Functions, Proc. Symp. Pure Math., vol. 33, Part I, American Mathematical Society, Providence, pp. 203--207, 1979.
2. Langlands R. P., Base change for GL(2), Annals of Math. Studies,vol. 96, Princeton Univ. Press, Princeton, 1980.
3. Jacquet, H., and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics,
4. vol. 114, Springer-Verlag, Berlin, 1970.
5. Shafarevich I.R.Abelian and nonabelian mathematics (in Russian), Sochineniya (Works), v.3, part 1, Moscow, Prima-B, 397-415, 1996.
6. Parshin A.N. Questions and remarks to the Langlands program, {\em Uspekhi Matem. Nauk}, 67, n 3, 115-146, 2012.6. Drinfeld V. Langlands’ conjecture for GL(2) over functional fields. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 565--574, Acad. Sci. Fennica,
7. Helsinki, 1980.
8. Lafforgue L. Chtoucas de Drinfeld, formule des traces d`Arthur-Selberg et correspondance de Langlands. Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002),pp. 383--400, Higher Ed. Press, Beijing, 2002.
9. Shafarevich I.R. On embedding problem for fields.{\em Math. USSR-Izv.}, vol. 18, P. 918--924, 1954.
10. Yakovlev A.V.The embedding problem for number fields.{\em Math. USSR-Izv.}, vol. 31, no. 2, P. 211--224, 1967.
11. Yakovlev A.V.Galois group of the algebraic closure of local fields.{\em Math. USSR-Izv.}, vol. 32, no. 6, P. 1283--1322, 1968.
12. Vostokov S.V.Canonical Hensel-Shafarevich basis in complete discrete valuation fields Zap. Nauchn. Semin. POMI, 394, 174--193, 2011.12.Vostokov S.V. Explicit construction of class field theory for a multidimensional local field{\em Math. USSR-Izv.}, vol. 49, no. 2, 283--308, 1985.
13. Vostokov S.V. Klimovitskii I.L.Primery elements in formal modules,{\em Mathematics and Informatics, 2, Steklov Math. Inst.}, RAS, Moscow, 153--163, 2013.
14. B. B. Lur'e. On embedding problem with kernel without center{\em Math. USSR-Izv.}, vol. 28, 1135-1138,1964.
15. B. B. Lur'e. Universally solvable embedding problems,{\em Proc. Steklov Inst. Math.}, 183, 141--147, 1991.
16. Ikonnikova E.V., Shaverdova E.V.The Shafarevich basis in higher-dimensional local field,{\em Zap. Nauchn. Semin. POMI}, 413, 115--133, 2013.
17. Ikonnikova E.V.The Hensel-Shafarevich canonical basis in Lubin-Tate formal modules,{\em J. Math. Sci., New York 219}, No. 3, 462---72, 2016.
18. Serre J.-P. Abelian $l$-Adic Representations and Elliptic Curves, Addison-Wesley Publishing Company, NY, 1989.
19. Drinfeld V.Moduli varieties of $F$-sheaves. \emph{Func. Anal. and Applications}, vol. 21, pp. 107-122, 1987.
20. Harris M., Taylor R. The geometry and cohomology of some simple Shimura varieties, Ann. Math. Stud. 151, Princeton University Press, Princeton, 2001.
21. Wiles, A., Modular elliptic curves and Fermat’s last theorem. \emph{Ann. of Math.} (2)141, no. 3, 443--551, 1995.
22. Taylor, R.; Wiles, A., Ring-theoretic properties of certain Hecke algebras. \emph{Ann. of Math.} (2) 141, no. 3, 553--572, 1995.
23. Anderson G. t-Motives. Duke math. J., vol. 53, pp. 457-502, 1986.24. Breuil, C., Conrad, B., Diamond F., Taylor R., On the modularity of elliptic curves over Q: wild 3-adic exercises. \emph{J. Amer. Math. Soc.} 14, no. 4, 843-939, 2001.
24. Clozel L., Harris M., Taylor, R., Automorphy for some l-adic lifts of automorphic mod l Galois representations, Pub. Math. I.H.E.S. 108, 1-181, 2008.
25. Harris M., Shepherd-Barron N., Taylor R. A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) vol. 171, no. 2, 779-813, 2010.
26. Arthur J.The principle of functoriality,{Bulletin of the American Math. society}, Vol. 40, no. 1, pp. 39-53, 2003.
27. Borel A.Automorphic $L$-functios,Proc. Symp. Pure Math., vol. 33, Part 2, pp. 27--61, 1979.
28. Tate J.Number theoretic background,Proc. Symp. Pure Math., vol. 33, Part 2, pp. 3--26, 1979.
29. Drinfeld V.Elliptic modules. \emph{Mat. Sbornik}, vol. 94, no. 4, pp. 594-627, 1974.
30. Deligne P., Husemoller D., Survey of Drinfeld's modules, \emph{Contemporary Math.}, vol. 67, pp. 25-91, 1987.
31. Lubin J. One-parameter formal Lie groups over $p$-adic integer rings,{Ann. of Math.}, vol. 80, pp. 464--484, 1964.
32. Urs Hartl.Number Fields and Function fields - Two Parallel Worlds, Papers from the 4th Conference held on Texel Island, April 2004,{Progress in Math.} 239, Birkhauser-Verlag, Basel, pp. 167-222, 2005.
33. Hartl U., Arasteh Rad.Local $\mathbb P$-shtukas and their relation to global ${G}$-shtukas.
34. \emph{M\"unster J. Math.} 7, No. 2, 623-670, 2014.
35. Hartl U., Viehmann E.\emph{J. reine angew. Math. (Crelle)} 656, 87-129, 2011.
36. Singh R.,Local shtukas and divisible local Anderson-modules,
37. Univ. M\"unster, Fachbereich Mathematik und Informatik (Diss.). 72~p. 2012.
38. Hartl U., Singh R.,Local Shtukas and Divisible Local Anderson Modules,
39. \emph{Canadian J. of Math.}, vol. 71, no. 5, 1163-1207, 2019.
40. Arasteh Rad,Uniformizing the moduli stacks of global $\mathfrak G$-shtukas,
41. Univ. M\"unster, Fachbereich Mathematik und Informatik, (Diss.). 85~p. 2012.
42. Wei\ss \, A,Foliations in moduli spaces of bounded global $G$-shtukas.
43. Univ. M\"unster, Fachbereich Mathematik und Informatik, (Diss.). 97~p. 2017.
44. Grothendieck A. Cat{\`e}gories fibr{\`e}es et descente, Expos{\`e} VI in Rev{\`e}tements {\`e}tales et groupe fondemental (SGA 1), Troisi{\`e}me {\`e}dition, corrig{\`e}, Institut des Hautes ´Etudes Scientifiques, Paris, 1963.
45. Lichtenbaum S., Schlessinger M. The cotangent complex of morphisms, Transactions of the American Math. society, 128, pp. 41-70. 1967.
46. Messing W. The Cristals Associated to Barsotti-Tate Groups, LNM 264, Springer-Verlag, Berlin etc.1973.
47. Abrashkin V. Compositio Mathematika, 142:4, pp. 867-888, 2006.
48. Illusie L. Complex cotangent et deformations. I, II, LNM, Vol.239, Vol. 283, Springer Verlag, Berlin-NY, 1971, 1972.
49. Faltings G. Group schemes with strict ${\mathcal O}$-action, \emph{ Mosc. Math. J.} 2, no. 2, 249-279, 2002.
50. Glazunov N., Quadratic forms, algebraic groups and number theory, Chebyshevskii Sbornik, vol.16, no. 4, P.77--89, 2015.
51. Glazunov N., Extremal forms and rigidity in arithmetic geometry and in dynamics, Cheby\-shevskii Sbornik, vol.16, no. 3, P.124--146, 2015.
52. Glazunov N.,Duality in abelian varieties and formal groups over local fields. I. Chebyshevskii Sbornik, vol. 19, no.1, P. 44-56, 2018.
Review
For citations:
Glazunov N.M. On Langlands program, global fields and shtukas. Chebyshevskii Sbornik. 2020;21(3):68-83. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-68-83