Development of mechanisms of hydrogen cracking of metal systems and methods to protect steel products from corrosion-mechanical destruction
https://doi.org/10.22405/2226-8383-2019-20-3-478-493
Abstract
The brittle destruction of high-strength metals and alloys used in the chemical and oil refining industry, caused by the influence of aggressive hydrogen-containing media, is a serious scientific issue, the relevance of which has increased dramatically in recent decades due to the discovery of the anomalous hydrogen effects on the complex properties of metals and alloys (abnormal plastic auto-deformation of iron, structural-phase transformations, synergistic effects of microplasticity, effect of reversible shape loss in amorphous metal alloys, and many others). A significant number of hydrogen sources (corrosion in aqueous solutions, hydrogen absorption in the production of welding operations and application of technological protective coatings or cathodic protection of underground pipelines) causes significant difficulties in describing the processes of hydrogen degradation of metal materials. Degradation is manifested in various ways, such as: hydrogen cracking of high-strength steels; hydrogen participation in the process of stress corrosion cracking of stainless steels; cracking of nuclear reactor tubes made of zirconium alloys and embrittlement of titanium alloys by hydride formation, GaAs degradation of monolithic microwave integrated circuits on satellites, etc. The harmful effect of hydrogen on mechanical properties was first noted by Johnson in 1875. Since then, scientists have made many advances in the development of metals with optimal parameters of strength and plasticity. Despite many years of research, the problem of interaction of metal-hydrogen systems remains open due to the variety of approaches and techniques to the assessment of embrittlement effects of hydrogen and hydrogen-containing media. So far it has not been possible to establish a single mechanism of interaction of hydrogen with metal materials, which would explain the whole set of phenomena, related to hydrogen destruction. Therefore, to analyze the mechanisms of hydrogen cracking of metal systems and to develop methods of steel products protection from corrosion-mechanical destruction are relevant areas of scientific and practical activities.
About the Authors
Nikolay Nikolaevich SergeevRussian Federation
Aleksander Nikolaevich Sergeev
Russian Federation
Aleksander Evgenievich Gvozdev
Russian Federation
Pavel Nikolaevich Medvedev
Russian Federation
Sergey Nikolaevich Kutepov
Russian Federation
Dmitry Vladimirovich Maliy
Russian Federation
References
1. Shashkova, L.V., 2014, “Fraktal’no-sinergeticheskie aspekty lokal’noj mikropovrezhdaemosti i razrusheniya diffuzionno-aktivirovannoj vodorodom stali [Fractal-synergetic aspects of local micro-damage and destruction of diffusion-activated hydrogen steel], Moskva, Dis. . . . d-ra fiz.-mat. nauk, Tula, 336 p.
2. Shapovalov, V.I., 2013, “Legirovanie vodorodom” [Hydrogen doping], Dnepropetrovsk, Zhurfond, 385 p.
3. Hirth, J.P., 1980, Effects of hydrogen on the properties of iron and steel, Metall. Trans. A., vol. 11A, pp. 861-890.
4. Troiano, A.R., Hehemann, R.F., 1995, Stress corrosion cracking of ferritic and austenitic stainless steels, Hydrogen Embrittlement and Stress Corrosion Cracking, pp. 231-248.
5. Birnbaum, H.K., 1990, Mechanisms of hydrogen related fracture of metals, Hydrogen effects on materials behavior, Warrendale, PA, pp. 639-658.
6. Lynch, S.P., 2011, Chapter 1: Mechanistic and fractographic aspects of stress-corrosion cracking (SCC), Stress Corrosion Cracking. Woodhead Publishing Limited, pp. 3-89.
7. Lynch, S.P., 2011, Chapter 2: Hydrogen embrittlement (HE) phenomena and mechanisms, Stress Corrosion Cracking. Woodhead Publishing Limited, pp. 90-130.
8. Sergeev, N.N., Sergeev, A.N., Kutepov, S.N., et al., 2017, “Analiz teoreticheskih predstavlenij o mekhanizmah vodorodnogo rastreskivaniya metallov i splavov” [Analysis of theoretical ideas about the mechanisms of hydrogen cracking of metals and alloys], Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, vol. 21, no. 3(72), pp. 6-33.
9. Sergeev, N.N., Kutepov, S.N., Gvozdev, A.E., et al., 2017, “Mekhanizmy vodorodnogo rastreskivaniya metallov i splavov, svyazannye s usileniem dislokacionnoj aktivnosti” [Mechanisms of hydrogen cracking of metals and alloys associated with increased dislocation activity], Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, vol. 21, no. 2(71), pp. 32-47.
10. Sergeev, N. N., Sergeev, A. N., 2018, “Mekhanicheskie svojstva i vnutrennee trenie vysokoprochnyh stalej v korrozionnyh sredah” [Mechanical properties and internal friction of highstrength steels in corrosive environments], Tula, Izd-vo TulGU, 430 p.
11. GOST R 9.915-2010, 2011, “Metally, splavy, pokrytiya i izdeliya: Metody ispytanij na vodorodnoe ohrupchivanie” [Metals, alloys, coatings and products: hydrogen embrittlement test Methods], Moskva, Standartinform, 36 p.
12. ASTM F519-17, 2017, Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating, Coating Processes and Service Environments, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA.
13. GOST 9.901.1-89, 1993, “Edinaya sistema zashchity ot korrozii i stareniya. Metally i splavy. Obshchie trebovaniya k metodam ispytanij na korrozionnoe rastreskivanie” [Unified system of protection against corrosion and aging. Metals and alloys. General requirements for corrosion cracking test methods], Moskva, Standartinform, 21 p.
14. GOST 9.901.4-89, 1993, “Edinaya sistema zashchity ot korrozii i stareniya. Metally i splavy. Ispytaniya na korrozionnoe rastreskivanie obrazcov pri odnoosnom rastyazhenii” [Unified system of protection against corrosion and aging. Metals and alloys. Tests for corrosion cracking of specimens under uniaxial tension], Moskva, Standartinform, 7 p.
15. GOST 9.903-81, 1993, “Edinaya sistema zashchity ot korrozii i stareniya. Stali i splavy vysokoprochnye. Metody uskorennyh ispytanij na korrozionnoe rastreskivanie” [Unified system of protection against corrosion and aging. Steel and alloys high strength. Accelerated Corrosion Cracking Test Methods], Moskva, Standartinform, 16 p.
16. GOST 25156-82, 1982, “Metally. Dinamicheskij metod opredeleniya harakteristik uprugosti” [Metals. Dynamic method of determining the characteristics of elasticity], Moskva, Standartinform, 21 p.
17. Myers, S.M., Baskes, M.I., Birnbaum H.K., et al., 1992, Hydrogen interactions with defects in crystalline solids, Rev. Mod. Phys., vol. 64, no. 2, pp. 559-617.
18. Kutepov, S.N., 2017, “On some aspects of hydrogen interaction with dislocation clusters in metals and alloys” In proceedings of XIV Russian annual conference of young researchers and graduate students “Physics and chemistry and technology of inorganic materials”, Moskva, IMET RAN, pp. 42-44.
19. Kirchheim, R., Hirth, J.P., 1982, Hydrogen adsorption at cracks in Fe, Nb and Pd, Scr. Metall, vol. 16, pp. 475-478.
20. Zhang, T.-Y., Hack, J., 1999, The equilibrium concentration of hydrogen atoms ahead of a mixed mode I-mode III crack tip in single crystal iron, Metall. Mater. Trans. A., vol. 30A, pp. 155-159.
21. Hirth, J.P., Carnahan, B., 1978, Hydrogen adsorption at dislocations and cracks in Fe, Acta Metall, vol. 26, pp. 1795-1803.
22. Sergeev, N.N., Sergeev, A.N., Kutepov, S.N., 2018, “Mekhanizmy vodorodnogo rastreskivaniya metallov i splavov. Ch. I (OBZOR)” [Mechanisms of hydrogen cracking of metals and alloys. Part I (REVIEW)], Materialovedenie, no. 3, pp. 27-33.
23. Sergeev, N.N., Sergeev, A.N., Kutepov, S.N., 2018, “Mekhanizmy vodorodnogo rastreskivaniya metallov i splavov. Ch. II (OBZOR)” [Mechanisms of hydrogen cracking of metals and alloys. Part II (REVIEW)], Materialovedenie, no. 4, pp. 20-29.
24. Nelson, H.G., 1983, Hydrogen embrittlement, Treatise on Materials Science and Technologie, vol. 25. pp. 275-359.
25. Tien, J.K., Thomson, A.W., Bernstein, I.M., et al., 1976, Hydrogen transport by dislocation, Metall. Trans. A., vol. 7A, pp. 821-829.
26. Golovin, S. A. Golovin, I. S., 2012, “Mekhanicheskaya spektroskopiya relaksacii Snukovskogo tipa” [Mechanical spectroscopy of relaxation Chukovskogo type], Metallovedenie i termicheskaya obrabotka metallov, no. 5 (683), pp. 3-11.
27. Chukanov, A. N., Yakovenko, A. A., 2012, “Rol’ vodoroda v degradacii i destrukcii malouglerodistyh stalej” [Role of hydrogen in degradation and destruction of low-carbon steels], Tula, Izvestiya TulGU, Seriya: Estestvennye nauki, no. 1, pp. 211-219.
28. Chukanov, A.N., Yakovenko, A.A., Wide, I.F., 2013, “Mekhanicheskaya spektroskopiya v izuchenii substrukturnoj degradacii uglerodistyh stalej” [Mechanical spectroscopy in the study of substructural degradation of carbon steels], Tomsk, Vestnik TGU, vol. 18, no. 4, pp. 1625-1626.
29. Shorshorov, M. H., Gvozdev, A. E., Zolotukhin, I. V., et al., 2016, “Razrabotka progressivnyh tekhnologij polucheniya i obrabotki metallov, splavov, poroshkovyh i kompozicionnyh nanomaterialov” [Development of advanced technologies for production and processing of metals, alloys, powder and composite nanomaterials], Tula, Izd-vo TulGU, 235 p.
30. Sergeev, N. N., Gvozdev, A. E., Sergeev, A. N., et al., 2016, “Resursy deformacionnoj sposobnosti razlichnyh materialov” [Resources strain the ability of different materials], Tula, Izd-vo TulGU, 172 p.
31. Gvozdev, A.E., Sergeev, N.N., Minaev, I.V., et al., 2015, “Rol’ processa zarodysheobrazovaniya v razvitii nekotoryh fazovyh perekhodov pervogo roda” [The role of the embryo formation process in the development of some first-order phase transitions], Materialovedenie, no. 1, pp. 15-21.
32. Gvozdev, A.E., Golyshev, I.V., Minayev, I.V., et al., 2015, Multiparametric optimization of laser cutting of steel sheets, Inorganic Materials: Applied Research, vol. 6, no. 4, pp. 305-310. URL: https://doi.org/10.1134/S2075113315040115
33. Gvozdev, A.E., Bogolyubova, D.N., Sergeev, N.N., 2015, Features of softening processes of aluminum, copper, and their alloys under hot deformation, Inorganic Materials: Applied Research, vol. 6. no. 1, pp. 32-40. URL: https://doi.org/10.1134/S2075113315010086
34. Brake, A.D., Gvozdev, A.E., Kolmakov, A.G., 2016, “Ispol’zovanie obobshchennogo treugol’nika paskalya dlya opisaniya kolebanij sily treniya materialov” [The use of the generalized Pascal triangle to describe the vibrations of the friction force of materials], Materialovedenie, no. 11, pp. 3-8.
35. Makarov, E.S., Gvozdev, A.E., Zhuravlev, G.M., et al., 2018, Analysis of plasticity theory equations of powder metal systems, Chebyshevskii Sbornik, vol.19 (1), pp.152-166. URL: https://doi.org/10.22405/2226-8383-2018-19-1-152-166
36. Makarov, E.S., Zhuravlev, G.M., Gvozdev, A.E., et al., 2018, The equations of the plasticity theory properties of dilating materials in the concept of plastic gas, Chebyshevskii Sbornik, vol. 19 (2), pp. 163-171. URL: https://doi.org/10.22405/2226-8383-2018-19-2-163-171
37. Zhuravlev, G.M., Gvozdev, A.E., Kolmakov, A.G., et al., 2018, Application of mathematical method of local variations to solve problems of plastic formification of metal, powder and nanocomposition materials, Chebyshevskii Sbornik, vol. 19 (4), pp. 43-54. URL: https://doi.org/10.22405/2226-8383-2018-19-4-43-54
38. Makarov, E.S., Gvozdev, A.E., Zhuravlev, G.M., et al., 2017, Application of plasticity theory of dilating media to sealing processes of powders of metallic systems, Chebyshevskii Sbornik, vol. 18 (4), pp. 268-284. URL: https://doi.org/10.22405/2226-8383-2017-18-4-268-284.
39. Gvozdev, A.E., Zhuravlev, G.M., Sapozhnikov, S.V., 2017, “K teoreticheskomu analizu processa kompaktirovaniya poroshkovyh materialov pressovaniem” [Theoretical analysis of the process of compacting powder materials by pressing], Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle, no. 4, pp. 273-283.
40. Breki, A.D., Aleksandrov, S.E., Tyurikov, K.S., et al., 2018, Antifriction properties of plasmachemical coatings based on SiO2 with MoS2 nanoparticles under conditions of spinning friction on SHKH15 steel, Inorganic Materials: Applied Research, vol. 9, no 4, pp. 714-718. URL: https://doi.org/10.1134/S2075113318040081
Review
For citations:
Sergeev N.N., Sergeev A.N., Gvozdev A.E., Medvedev P.N., Kutepov S.N., Maliy D.V. Development of mechanisms of hydrogen cracking of metal systems and methods to protect steel products from corrosion-mechanical destruction. Chebyshevskii Sbornik. 2019;20(3):478-493. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-478-493