Materials and technologies for production products by additive manufacturing
https://doi.org/10.22405/2226-8383-2019-20-3-453-477
Abstract
The paper presents comparative schemes of classical production of complex products and their manufacturing with using additive technologies, including the main positive and negative aspects of using additive technologies. The article listes the main technologies of additive manufacturing of products, indicating the specifics of their application. The paper describes the methods of production and properties of powder materials. The spheroidization technology of powder materials and its post-processes is described. The article presents the concept of full cycle additive manufacturing. The basic software packages for modeling the processes of additive production of products from various metal systems are presented.
About the Authors
Anastasia Nikolaevna KubanovaRussian Federation
Aleksander Nikolaevich Sergeev
Russian Federation
Nikolai Mihailovich Dobrovolskii
Russian Federation
Aleksander Evgenievich Gvozdev
Russian Federation
Pavel Nikolaevich Medvedev
Russian Federation
Dmitriy Vladimirovich Maliy
Russian Federation
References
1. Kalaida, T. A., 2018, “The method of selective laser melting for the creation of products with complex geometry” [Metod selektivnogo lazernogo plavleniya dlya sozdaniya izdelij so slozhnoj geometriej], Proceedings of the XV Russian annual conference of young researchers and postgraduates “Physico-chemistry and technology of inorganic materials”, Moscow, 2018, pp. 55-56.
2. Dezhina, I. G., Ponomarev, A. K., Frolov, A. S., 2015, “New production technologies: public analytical report”, Moscow, “Delo” RANHiGS, 272 p.
3. Gvozdev, A. E., 1992, “Production of high-speed tool blanks in conditions of superplasticity”, Moscow, Mashinostroenie, 176 p.
4. Powders for 3D Printing / MKNANO [electronic resource]: URL: https://mknano.com/3-D-Printing-Additive-Manufacturing-Materials/Metal-Powders/Spherical-Metal-Powders/Powders-for-3D-Printing (accessed 24.10.2019).
5. Additive manufacturing. Different kinds of additive manufacturing / ScanAndMake [electronic resource]: URL: https://scanandmake.com/additive-manufacturing#collapse3 (accessed 24.10.2019).
6. Kaplan, M. A., 2018, “Research of structure of spherical powder of corrosion-resistant steel 316L for additive production” [Issledovanie struktury sfericheskogo poroshka korrozionnostojkoj stali 316L dlya additivnogo proizvodstva], Proceedings of XV Russian annual conference of young scientists and postgraduates "Physical chemistry and technology of inorganic materials Moscow, pp. 468-469.
7. Back from virtuality [electronic resource]: URL: https://hi-tech.mail.ru/review/nazad_iz_virtualnosti/ (accessed 24.10.2019).
8. Vladislavskaya, E. Yu., 2018, “Investigation of mechanical characteristics of samples from martensitic aging steel 08X18K9M5T synthesized by selective laser fusion” [Issledovanie mekhanicheskih harakteristik obrazcov iz martensitnostareyushchej stali 08H18K9M5T, sintezirovannyh metodom selektivnogo lazernogo splavleniya], Proceedings of the XV Russian annual conference of young researchers and postgraduates “Physical chemistry and technology of inorganic materials”, Moscow, pp. 38-39.
9. The Types Of 3D Printing / All About 3D Printing [electronic resource]: URL:http://allabout3dprinting.com/types-of-3d-printing/(accessed 24.10.2019).
10. Laser sintering, melting and others – SLS, SLM, DMLS, DMP, EBM, SHS / 3D Printing and Design [electronic resource]: URL: https://www.additive.blog/knowledge-base/3d-printers/laser-sintering-melting-sls-slm-dmlsdmp-ebm-shs/ (accessed 24.10.2019).
11. Spark plasma sintering system / Systeme GmbH (FCT) [electronic resource]: URL: http://www.fct-systeme.de/en/content/Spark_Plasma_Sinteranlagen/ nm.12 nc.26 (accessed 24.10.2019).
12. Mantsybora, A. A., Polonik, M. V., 2017, “Calculation by finite element method of optical fiber laser processing of a material of a given configuration” [Raschet metodom konechnyh elementov processa obrabotki optovolokonnym lazerom materiala zadannoj konfiguracii], Proceedings of the VII international conference “Deformation and destruction of materials and nanomaterials”, Moscow, IMET RAN, 951 p.
13. Antonov, A. A., Artemyev, A. A., Sokolov, G. N.,2015 “Development of cored wire for arc surfacing of wear-resistant alloy of Fe-Cr-C-Mo-Ni-Ti-B system” [Razrabotka poroshkovoj provoloki dlya dugovoj naplavki iznosostojkogo splava sistemy Fe-Cr-C-Mo-Ni-Ti-B], Proceedings of the VII international conference “Deformation and destruction of materials and nanomaterials”, Moscow, IMET RAN, 953 p.
14. Jing, G., Yong, Zh., Changmeng, L., Qianru, W., Xianping, Ch. and Jiping L., 2016, “Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency”, Metals for Additive Manufacturing, vol. 9(10), p. 823. URL: https://doi.org/10.3390/ma9100823
15. Kapralov, E. V., Budovskikh, E. A., Kapralov, E. V., Budovskikh, E. A., Gromov, V. E., Raikov, S. V., Ivanov, Yu. F., 2014, “Structure and properties of composite wear-resistant surfacing on steel” [Struktura i svojstva kompozicionnyh iznosostojkih naplavok na stal’], Novokuznetsk Izd. centr SibGIU, 109 p.
16. D printer powder metal. Principles, capabilities, supplies / Computer help electronic resource]: URL: https://128gb.ru/3d-powder-metal-printer-principles-opportunities-supplies-prices.html (accessed 24.10.2019).
17. Mechanic, A. 3D fans should calm down a bit. Science and technology // Stimulus [electronic resource]: URL: https://stimul.online/articles/science-and-technology/3d-fanam-stoit-nemnogo-uspokoitsya/ (accessed 24.10.2019).
18. Laser Metal Deposition Resolution [electronic resource]: URL: https://www.auroralilys.com/index5.php?yhsw=laser-metal-deposition-resolution (accessed 24.10.2019).
19. Levashov, E. A., Kaplansky, Yu. Yu., Kurbatkina, V. V., Patsera, E. I., Samokhin, A.V., Fadeev, A. A., Martynov, D. A., Gurskikh, A.V., Chupeeva, A. N., 2018 “A new generation of heatresistant Nickel alloys with hierarchical structure and their application in additive technologies” [Novoe pokolenie zharoprochnyh nikelevyh splavov s ierarhicheskoj strukturoj i ih primenenie v additivnyh tekhnologiyah], Proceedings of the 13th international scientific and technical conference, Minsk, pp. 62–65.
20. Grigorovich, K. V., 2018, “Modern possibilities by the method of determination of gasforming impurities and nonmetallic inclusions in metals and alloys” [Sovremennye vozmozhnosti metodom opredeleniya gazoobrazuyushchih primesej i nemetallicheskih vklyuchenij v metallah i splavah], Proceedings of the XV Russian annual conference of young researchers and postgraduates “Physico-chemistry and technology of inorganic materials”, Moscow, pp. 24–25.
21. Additive Manufacturing. With Amperprint for 3D-Printing you Have the Powder to Create / Höganäs [electronic resource]: URL: https://www.hoganas.com/en/powder-technologies/additive-manufacturing/3d-printingpowders/ (accessed 24.10.2019).
22. A look into powder materials for metal 3d printing / 3D-Printing Industry (3DPI) [electronic resource]: URL: https://3dprintingindustry.com/news/a-look-into-powder-materials-for-metal-3d-printing-57788/ (accessed 24.10.2019).
23. Kirsankin, A. A., 2018 “Obtaining spherical powders by gas atomization for additive production” [Poluchenie sfericheskih poroshkov metodom gazovoj atomizacii dlya additivnogo proizvodstva], Proceedings of the XV Russian annual conference of young researchers and postgraduates “Physico-chemistry and technology of inorganic materials”, Moscow, pp. 58–59.
24. Fadeev, A. A., 2018, “Spheroidization of metal powders of W-Ni-Fe system in thermal plasma of electric arc discharge” [Sferoidizaciya metallicheskih poroshkov sistemy W-Ni-Fe v termicheskoj plazme elektrodugovogo razryada], Proceedings of the XV Russian annual conference of young researchers and postgraduates “Physico-chemistry and technology of inorganic materials”, Moscow, pp. 311–313.
25. Zlenko, M. A., Nagaytsev, M. V., Dovbysh, V. M., 2015, “Additive technologies in mechanical engineering” [Additivnye tekhnologii v mashinostroenii], GNC RF FGUP .NAMI., 220 p.
26. Barakhtin, B. K., Vasilyeva, O. V., Zhukov, A. S., Kuznetsov, P. A., 2017, “Physico-chemical processes in powder consolidation in the method of selective laser fusion” [Fiziko-himicheskie processy pri konsolidacii poroshka v metode selektivnogo lazernogo splavleniya], Proceedings of the VII international conference “Deformation and destruction of materials and nanomaterials Moscow, IMET RAN, 951 p.
27. Tungsten / TEKNA [electronic resource]: URL: http://www.tekna.com/spherical-powders/tungsten (accessed 24.10.2019).
28. Spherical powders of refractory metals for additive technologies / JSC “POLEMA” [electronic resource]: URL: http://www.polema.net/userfiles/files/сферичные%20порошки%20тугоплавких%20металлов%20производства%20АО%20ПОЛЕМА(1).pdf (accessed 24.10.2019).
29. Stroganov, G. B., 1985, “High-Strength casting aluminum alloys” [Vysokoprochnye litejnye alyuminievye splavy], Moscow, Metallurgiya, 216 p.
30. Zoheir, F., 2011, “The influence of porosity and hot isostatic pressing treatment on wear characteristics of cast and P/M aluminum alloys”, Wear, vol. 271, pp. 1594–1601. DOI: 10.1016/j.wear.2011.01.037.
31. Padalko, A. G., 2007, “Practice of hot isostatic pressing of inorganic materials” [Praktika goryachego izostaticheskogo pressovaniya neorganicheskih materialov], Moscow, Akademkniga, 267 p.
32. James, T. Staley J., Murat, T., John, C., 2007, “The effect of increased HIP temperatures on biofilms and tensile properties of A206-T71 aluminum castings”, Materials Science and Engineering A 460-461, pp. 324-334. DOI: 10.1016/j.msea.2007.01.049
33. Belov, A. F., Bondarev, B. I., Shmakov, Yu. V., 1983, “Properties of billets from aluminum alloys after hot isostatic pressing” [Svojstva zagotovok iz alyuminievyh splavov posle goryachego izostaticheskogo pressovaniya], Non-Ferrous metals, No. 5, pp. 65–67.
34. Akopyan, T. K., 2014, “Influence of hot isostatic pressing on structure and properties of highstrength casting aluminum alloys of new generation-nikalins AC6R0, 5J and AC6N4” [Vliyanie goryachego izostaticheskogo pressovaniya na strukturu i svojstva vysokoprochnyh litejnyh alyuminievyh splavov novogo pokoleniya – nikalinov AC6R0,5ZH i AC6N4], Proceedings of XI Russian annual conference of young scientists and postgraduates “Physico-chemistry and technology of inorganic materials”, Moscow, IMET RAN, 619 p.
35. D Systems the Power of on Demand / 3D SYSTEMS [electronic resource]: URL: https://www.3dsystems.com/on-demand-manufacturing (accessed 24.10.2019).
36. Frontrunner for New Production Process. Powder Production and 3D Printing / SMS group [electronic resource]: URL: https://www.sms-group.com/plants/all-plants/powder-productionand-3d-printing/ (accessed 24.10.2019).
37. D Printing Software for Beginners and Pros / ALL3DP [electronic resource]: URL: https://all3dp.com/1/best-free-3d-printing-software-3d-printer-program/ (accessed 24.10.2019).
38.
Review
For citations:
Kubanova A.N., Sergeev A.N., Dobrovolskii N.M., Gvozdev A.E., Medvedev P.N., Maliy D.V. Materials and technologies for production products by additive manufacturing. Chebyshevskii Sbornik. 2019;20(3):453-477. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-453-477