Preview

Chebyshevskii Sbornik

Advanced search

Estimations of the constant of the best simultaneous Diophanite approximations

https://doi.org/10.22405/2226-8383-2019-20-3-405-429

Abstract

This paper is devoted to the development of a new approach for estimating from below the constant of the best Diophantine approximations. The history of this problem dates back to P. G. Dirichlet. Over time, the approaches used to solve this problem have undergone major changes. From algebra (P. G. Dirichlet, A. Hurwitz, F. Furtwengler) this problem has moved into the field geometry of numbers (H. Davenport, J. W. S. Cassels). One cannot fail to note such an interesting component of this problem as the close relationship of diophantine approximations with geometry of numbers in general, and algebraic lattices in particular (J. W. S. Cassels, A. D. Bruno). This provided new opportunities, both for applying the already known results and for application of new approaches to the problem of the best Diophantine approximations (A. D. Bruno, N. G. Moshchevitin).

In the mid-twentieth century, H. Davenport found a fundamental relationship between the value of the constant of the best joint Diophantine approximations and critical determinant of a stellar body of a special kind. Later, J. W. S. Cassels went from directly calculating the critical determinant to estimating its value by calculating the largest value of Vn,s – the volume of the parallelepiped centered at the origin with certain properties. This approach allowed us to obtain estimates of the constant of the best joint Diophantine approximations for n = 2, 3, 4 (see the works of J. W. S. Kassels, T. Cusick, S. Krass).

In this paper, based on the approach described above, the estimates n = 5 and n = 6 are obtained. The idea of constructing estimates differs from the work of T. Cusick. Using numerical experiments, approximate and then exact values of the estimates Vn,s were obtained. The proof of these estimates is rather cumbersome and is primarily of technical complexity. Another difference between constant estimates is the ability to generalize them to any dimension.

As part of the proof of estimates of the constant of the best Diophantine approximations, we have solved a number of multidimensional optimization problems. In solving them, we used the mathematical package Wolfram Mathematica quite actively. These results are an intermediate step for analytical proofs of the estimates of Vn,s and the constant of the best Diophantine approximations Cn for n ≥ 3.

In the process of numerical experiments, interesting information was also obtained on the structure of the values of Vn,s. These results are in good agreement with the results obtained in the works of S. Krass. The question of the structure of the values of Vn,s for large dimensions has been little studied and can be of considerable interest both from the point of geometry of numbers and from the point of theory of diophantine approximations.

About the Author

Yurij Aleksandrovich Basalov

Russian Federation


References

1. Adams W. W. 1969, “Simultaneous Diophantine approximations and cubic irrationals“, Pacific journal of mathematics, Vol. 30, No. 1, pp. 1–14.

2. Adams W. W. 1980, “The best two-dimensional diophanite approximation constant for cubic irrtionals“, Pacific journal of mathematics, Vol. 91, No. 1, pp. 29-30.

3. Bernstein L. 1972, “A 3-Dimensional Periodic Jacobi-Perron Algorithm of Period Length 8“, Journal of Number Theory, Vol. 4, Issue 1. pp. 48–69.

4. Blichfeldt H. 1914, “A new principle in the geometry of numbers, with some applications“, Trans. Amer. Math. Soc., Vol. 15. pp. 227–235.

5. Cassels J. W. S. 1955, “Simultaneous Diophantine approximation“, J. London Math. Soc., Vol. 30, pp. 119-121.

6. Cusick T. W. 1980, “Estimates for Diophantine approximation constants“, Journal of Number Theory, Vol. 12 (4), pp. 543–556.

7. Cusick J. W. 1983, “The two dimensional diophanite approximation constant“, Pacific journal of mathematics, Vol. 105, No. 1, pp. 53–67.

8. Davenport. H. 1955, “On a theorem of Furtwängler“, J. London Math. Soc. , Vol. 30, pp. 186-195.

9. Dirichlet L. G. P. 1842, “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen“, S. B. Preuss. Akad. Wiss., pp. 93–95.

10. Euler L. 1775, “De relatione inter ternas pluresve quantitates instituenda“ Petersburger Akademie Notiz. Exhib..

11. Finch S. R. 2003, Mathematical Constants, Cambridge University Press (Encyclopedia of Mathematics and its Applications, Book 94).

12. Fujita H. 1993, “The minimum discriminant of totally real algebraic fields of degree 9 with cubic subfields“, Mathematics of Computation, Vol. 60, No. 202, pp. 801–810.

13. Furtwängler H. 1927, “ Über die simulatene Approximation von Irrationalzahlen. I“, Math. Ann., Vol. 96, pp. 169-175.

14. Furtwängler H. 1928, “ Über die simulatene Approximation von Irrationalzahlen. II“, Math. Ann., Vol. 99, pp. 71-83.

15. Hunter J. 1891, “The minimum discriminant of quintic fields“, Proc. Glasgow Math. Assoc., Vol. 3, pp. 57-67.

16. Hurwitz A. 1891, “ Über die angenaherte Darstellung der Irrationalzahlen durch rationale Briiche“, Math. Ann., Vol. 39, pp. 279-284.

17. Jacobi C. G. J. 1868, “Allgemeine Theorie der Kettenbruchanlichen Algorithmen, in welchenjede Zahl aus drei vorhergehenden gebildet wird“, J. Reine Angew. Math. Vol. 69, pp. 29–64.

18. Klüners J., Malle G. A. 2001, “Database for Field Extensions of the Rationals“, LMS Journal of Computation and Mathematics, Vol. 4, pp. 182–196.

19. Koksma J., Meulenbeld B. 1942, “Sur le theoreme de Minkowski, concernant un systeme de formes lineaires reelles. I, II, III, IV“, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., Vol. 45, pp. 256–262, 354–359, 471–478, 578–584.

20. Krass S. 1985, “Estimates for n-dimensional Diophantine approximation constants for n ≥ 4“, J. Number Theory , Vol. 20, Is. 2, pp. 172-176.

21. Krass S. 1985, “The N-dimensional diophantine approximation constants“, Australian Mathematical Society , Vol. 32, Is. 2, pp. 313-316.

22. Lanker M., Petek P., Rugeji M. S. 2011, “The continued fractions ladder of specific pairs of irrationals“, Available at: https://arxiv.org/abs/1108.0087

23. Mack J. M. 1977, “Simultaneous Diophantine approximation“, J. Austral. Math. Soc. A., Vol. 24, pp. 266-285.

24. Mayer J. 1929, “Die absolut-kleinsten Diskriminanten der biquadratischen Zahlkorper“, S.-B. Akad. Wiss. Wien Abt. Ila., Vol. 138, pp. 733–742.

25. Minkovski H. 1896, Geometrie der Zahlen. Teubner.

26. Mordell L. 1946, “Lattice points in some n-dimensional non-convex regions. I, II “, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., Vol. 49, pp. 773–781, 782–792.

27. Mullender P. 1948, “Lattice points in non-convex regions. I“, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., Vol. 51, pp. 874–884.

28. Murru N. 2013, “On the Hermite problem for cubic irrationaliti“, Available at:

29. https://arxiv.org/abs/1305.3285v3

30. Nowak W. G. 1981, “A note on simultaneous Diophantine approximation“, Manuscr. Math., Vol. 36, pp. 33-46.

31. Nowak W. G. 1993, “A remark concerning the s-dimensional simultaneous Diophantine approximation constants“, Graz. Math. Ber., Vol. 318. pp. 105-110.

32. Nowak W. G. 2014, “Lower bounds for simultaneous Diophantine approximation constants“, Comm. Math, Vol. 22, Is. 1, pp. 71-76.

33. Nowak W. G. 2016, “Simultaneous Diophantine approximation: Searching for analogues of Hurwitz’s theorem“, In: T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, Springer, Switzerland, pp. 181-197.

34. Odlyzko A. M. 1990, “Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results“, Journal de Th’eorie des Nombres de Bordeaux, Tome 2, No. 1, pp. 119–141.

35. Perron O. 1907, “Grundlagen fur eine Theorie des Jacobischen Ketten-bruchalgorithmus“, Math. Ann., Vol. 64, pp. 1–76.

36. Spohn W. G. 1968, “Blichfeldt’s theorem and simultaneous Diophantine approximation“, Amer. J. Math., Vol. 90, pp. 885–894.

37. Szekers G. 1984, “The n-dimensional approximation constant“, Bull. Austral. Math. Soc., Vol. 29, pp. 119–125.

38. Woods A. C. 1981, “The asymetric product of three homogenous linear forms“, Pacific J. Math., Vol. 93, pp. 237–250.

39. Bruno A. D. 2004, “Algorithm of the generalized continued fraction“, Preprint IAM of Keldysh.

40. Bruno A. D. 2005, “The structure of best Diophantine approximations“, Proceedings FAS.

41. Bruno A. D. 2005, “Algorithm of the generalized continued fractions“, Proceedings FAS.

42. Cassels J. W. S. 1965, An Introduction to the Geometry of Numbers, Mir.

43. Moshchevitin N. G. 2002, “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations“, Proceedings of the Steklov Mathematical Institute, Vol. 239, pp. 268–274.

44. Prasolov V. V. 2001, Polynomials, MCNMO.

45. Hinchin A. Ya. 1961, Continued fractions, Mir.

46. Schmidt W. M. 1983, Diophantine Approximation, Mir. A Database for Number Fields. Available at: http://galoisdb.math.upb.de/

47. Basalov Yu. A. 2015, “Geometric interpretation of the problem of the best Diophantine approximations“, V All-Russian Scientific and Practical Conference of faculty, graduate students, undergraduates, applicants TSPU of Leo Tolstoy "University of the XXI century: research in the framework of scientific schools".

48. Basalov Yu. A. 2016, “On the best approximations of cubic irrationality“, All-Russian Scientific and Practical Conference "University of the XXI Century: Scientific Dimension".

49. Rebrova I. Yu., Dobrovolsky N. M., Dobrovolsky N. N., Balaba I. N., Yesayan A. R., Basalov Yu. A., Basalova A. N., Lyamin M. I., Rodionov A. V. 2017, The number-theoretic method in approximate analysis and its implementation in POIVS "TMK II, Publishing house of TSPU of Leo Tolstoy, 2017.

50. Basalov Yu. A. 2017, “Computer modeling and partial quotients of cubic irrationality“, IV international conference "Multiscale modeling of structures, structure of matter, nanomaterials and nanotechnology", pp. 97–100.

51. Basalov Yu. A. 2018, “On the estimation of the constant of the best Diophantine approximations for n > 4 “, XV International Conference Algebra, Number Theory and Discrete Geometry: Modern Problems and Applications dedicated to the centenary of the birth of Professor Korobov Nikolai Mikhailovich, pp. 245–248.

52. Basalov Yu. A. 2018, “On the history of estimates of the constant of the best joint Diophantine approximations“, Chebyshevskii sbornik, Vol. 19, Issue 2, pp. 388–405. https://doi.org/10.22405/2226-8383-2018-19-2-394-411

53. Basalov Yu. A. 2019, “On estimating the constant of simultaneous Diophantine approximation“, Avaliable at: https://arxiv.org/abs/1804.05385

54. Basalov Yu. A. 2019, “On methods for lower estimation of the constant of diophantine approximations“, Materials of the International Youth Scientific Forum "LOMONOSOV-2019".

55. Basalov Yu. A. 2019, “On methods for estimating critical determinants“, Algebra, number theory and discrete geometry: modern problems, applications and problems of history: Materials of the XVI Intern. Conf., Dedicated to the 80th birthday of Professor Michel Deza, pp. 227–228.

56. Basalov Yu. A. 2019, ‘Estimation of the constant of the best simultaneous Diophanite approximations for n=5 and n=6“, Chebyshevskii sbornik, Vol. 20, Issue 1, pp. 66–81. https://doi.org/10.22405/2226-8383-2018-20-1-66-81


Review

For citations:


Basalov Yu.A. Estimations of the constant of the best simultaneous Diophanite approximations. Chebyshevskii Sbornik. 2019;20(3):405-429. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-405-429

Views: 404


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)