Preview

Chebyshevskii Sbornik

Advanced search

On the exponents of the convergence of singular integrals and singular series of a multivariate problem

https://doi.org/10.22405/2226-8383-2019-20-4-46-57

Abstract

In the paper we continue studies on the theory of multivariate trigonometric sums, in the base of which lies of the I. M. Vinogradov's method. Here we obtain for $$n=r=2$$ lower estimates of the convergence exponent of the singular series and the singular integral of the asymptotic formulas for $$P\to\infty$$ for the number of solutions of the following system of Diophantine equations
$$
\sum_{j=1}^{2k}(-1)^jx_{1,j}^{t_1}\dots x_{r,j}^{t_r}=0,\quad 0\leq t_1,\dots, t_r\leq n,
$$
where $$n\geq 2,r\geq 1, k$$ are natural numbers, moreover an each variable $$x_{i,j}$$ can take
all integer values from 1 to $$P\geq 1.$$

About the Authors

Lyudmila Gennadievna Arkhipova
Lomonosov Moscow state University
Russian Federation

Candidate of physical and mathematical Sciences, Junior researcher of the Department of mathematics
and computer methods of analysis, faculty of mechanics and mathematics, Lomonosov Moscow state University (Moscow).



Vladimir Nikolaevich Chubarikov
Lomonosov Moscow state University
Russian Federation
Doctor of physical and mathematical Sciences, Professor, head of the Department of mathematical and computer methods of analysis, president of the mechanics and mathematics faculty of the M. V. Lomonosov Moscow State University


References

1. Vinogradov I.M. 1980. The method of trigonometric sums in the number theory // Moscow: Nauka, pp. 144.

2. Vinogradov I.M. 2004. Elements of the number theory. Ed. 10th. // Sankt-Petersburg: Publ. House «Lan’» , pp. 176.

3. Hua L.-K. 1983. Selected Papers. // New York Inc.: Springer Verlag, pp. 888.

4. Hua L.-K. 1964. The method of trigonometric sums and its applications in the number theory // Moscow: Mir, pp. 188.

5. Arkhipov G.I. 2013. Selected Works // Orjol: Publ.House of Orjol University.

6. Arkhipov G.I., Chubarikov V.N., Karatsuba A.A. 1987. The theory of multiple trigonometricsums // Moscow: Nauka.

7. Arkhipov G.I., Chubarikov V.N., Karatsuba A.A. 2004. Trigonometric Sums in Number Theory and Analysis // Berlin-New York: Walter de Gruyter (de Gruyter Expositions in Mathematics 39).

8. Saliba H.M., Chubarikov V.N. 2017. On the multivariate Arkhipov–Karatsuba system of congruences // Dokl. RAS. 472, № 6, p. 631–633.

9. Saliba H.M., Chubarikov V.N. 2019. The theorem on a mean value for non complete rational trigonometric sums // Chebyshev Sbornik. 20, № 1(69), p. 31–37.

10. Chubarikov V.N. 1976. On a multiple integral // Dokl. AS USSR. 227, № 6, p. 1308–1310.

11. Chubarikov V.N. 1976. On multiple rational trigonometric sums and multiple integrals // Math. notes. 20, № 1, p. 61–68.

12. Chubarikov V.N. 2015. On the convergence exponent of the singular integral of a multivariate additive problem // Dokl. RAS. 46, № 5, p. 530–532.

13. Chubarikov V.N. 2015. On the convergence exponent of the mean value of complete rational arithmetical sums // Chebyshev Sbornik. 16, № 4(56), p. 303–318.

14. Arkhipova L.G., Chubarikov V.N. 2018. On the convergence exponent of the singular series of a multivariate problem // Vestn. Moscow University. Ser. 1, Mathematics, Mechanics. № 5, p. 68–71.

15. Demidovich B.P. 2017. The collection of problems on the mathematical analysis. Ed. 19th, correct. // Sankt-Petersburg: Publ.House «Lan’» , p. 624.

16. Arkhipov G.I., Sadovnichii V.A., Chubarikov V.N. 2004. Lectures on the mathematical analysis: Text-book, Ed. 4th., correct. // Moscow: DROFA, p. 640.


Review

For citations:


Arkhipova L.G., Chubarikov V.N. On the exponents of the convergence of singular integrals and singular series of a multivariate problem. Chebyshevskii Sbornik. 2019;20(4):46-57. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-4-46-57

Views: 395


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)