Preview

Chebyshevskii Sbornik

Advanced search

About the life and activities of academician Zarullo Husenovich Rakhmonov

https://doi.org/10.22405/2226-8383-2019-20-4-6-31

Abstract

The article is devoted to the doctor of physico-mathematical Sciences, academician of the
Academy of Sciences of the Republic of Tajikistan, one of the foremost experts in the field
of number theory, Zarullo Husenovich Rakhmonov in connection with his 60–year anniversary.
Provides a brief biography, the main stages of development of his scientific career. We give
the review of results of Z. H. Rakhmonov on following problems: on the distribution of the
Goldbach’s and Hardy–Littlewood’s numbers in short arithmetical progressions, on the problem
of mean values of the Chebyshev’s function and the problem of the Riemann zeta-function zeros
belonging to short rectangular in the critical strip, to estimations short trigonometric sums over
primes and on the Goldbach’s problem with almost equals summands, on the Selberg’s problem
concerning to the Riemann’s zeta-function zeros lying on short intevals of the critical line. In
conclusion, the author presents a list of main scientific publications Z. H. Rakhmonov

About the Author

Vladimir Nikolaevich Chubarikov
M. V. Lomonosov Moscow State University
Russian Federation
doctor of physical and mathematical sciences, professor, head of the Department of mathematical and computer methods of analysis, president of the mechanics and mathematics faculty


References

1. Vinogradov, I. M., 1952, Izbrannye trudy. (Russian) [Selected works.], Izdat. Akad. Nauk SSSR, Moscow, 436 pp.

2. Vinogradov, I. M., & Karatsuba, A. A., 1986, “The method of trigonometric sums in number theory”, Proc. Steklov Inst. Math., vol. 168, pp. 3-30.

3. Vinogradov, I. M., 1938, “On the distribution of quadratic rests and non-rests of the form p+k to a prime modulus”, Rec. Math. [Mat. Sbornik] N.S., vol. 3(45), no 2, pp. 311–319.

4. Vinogradov, I. M., 1943, “An improvement of the estimation of sums with primes”, Izv. Akad. Nauk SSSR. Ser. Mat., vol. 7, no 1, pp. 17–34.

5. Linnik, Ju. V. 1952, “Some conditional theorems concerning binary problems with prime numbers”, Izv. Akad. Nauk SSSR. Ser. Mat., vol. 16, Is. 6, pp. 503–520.

6. Prachar, K. 1976, “Uber die Anwendung einer Methode von Linnik”, Acta Arithmetica, vol. 29, pp. 367-376.

7. Prachar, K., 1984, “Bemerkungen uber Primzahlen in kurzen Reihen. [Remarks on primes in short sequences]”, Acta Arithmetica, vol. 44, pp. 175-180.

8. Wang Yuan, 1977, “On Linnik’s method concerning the Goldbach number”, Scientia Sinica, vol. 20, pp. 16-30.

9. Jutila, M., 1968, “On the least Goldbach’s number in an arithmetical progression with a prime difference”, Ann. Univ. Turku; Ser. A, I 118(5).

10. Vinogradov, I. M., 1952, “New approach to the estimation of a sum of values of χ(p+k)”, Izv. Akad. Nauk SSSR. Ser. Mat., vol. 16, Is. 3, pp. 197–210.

11. Vinogradov, I. M., 1953, “Improvement of an estimate for the sum of the values χ(p+k)”, Izv. Akad. Nauk SSSR. Ser. Mat., vol. 17, Is. 4, pp. 285–290.

12. Vinogradov, I. M., 1966, “An estimate for a certain sum extended over the primes of an arithmetic progression”, Izv. Akad. Nauk SSSR. Ser. Mat., vol. 30, Is. 3, pp. 481–496.

13. Linnik, Yu. V., 1975, “Recent works of I.M. Vinogradov”, Proceedings of the Steklov Institute of Mathematics, vol. 132, pp. 25–28.

14. Karatsuba, A. A., 2008, “Arithmetic problems in the theory of Dirichlet characters”, Russian Mathematical Surveys, vol 63, Is. 4, pp. 641-690.

15. Karatsuba, A. A., 1968, “Sums of characters, and primitive roots, in finite fields”, Dokl. Akad. Nauk SSSR, vol. 180, Is. 6. № 6, pp. 1287-1289.

16. Karatsuba, A. A., 1970, “Estimates of character sums”, Math. USSR-Izv., vol. 4, Is. 1, pp. 19–29.

17. Karatsuba, A. A., 1970, “Sums of characters over prime number”, Math. USSR-Izv., vol. 4, Is. 2, pp. 303–326.

18. Karatsuba, A. A., 1970, “Sums of characters with prime numbers”, Dokl. Akad. Nauk SSSR, vol. 190, Is. 3, pp. 517–518.

19. Karatsuba, A. A., 1970, “The distribution of products of shifted prime numbers in arithmetic progressions”, Dokl. Akad. Nauk SSSR, vol. 192, Is. 4, pp. 724–727.

20. Karatsuba, A. A., 1971, “Sums of characters with prime numbers in an arithmetic progression”, Math. USSR-Izv., vol. 5, Is. 3, pp. 485–501.

21. Karatsuba, A. A., 1975, “Sums of characters in sequences of shifted prime numbers, with applications”, Math. Notes, vol. 17, Is. 1, pp. 91–93.

22. Karatsuba, A. A., 1975, “Some problems of contemporary analytic number theorem”, Math. Notes, vol. 17, Is. 2, pp. 195–199.

23. Karatsuba, A. A., 1979, “Distribution of values of nonprincipal characters”, Proc. Steklov Inst. Math., vol. 142, pp. 165–174.

24. Karatsuba, A. A., 1978, “Sums of Legendre symbols of polynomials of second degree over prime numbers”, Math. USSR-Izv., vol. 12, Is. 2, pp. 299–308.

25. Rakhmonov, Z. Kh., 1986, “On the distribution of values of Dirichlet characters”, Russian Math. Surveys, vol. 41, Is. 1, pp/ 237–238. doi:10.1070/RM1986v041n01ABEH0032

26. Rakhmonov, Z. Kh., 1986, “Estimation of the sum of characters with primes”, Dokl. Akad. Nauk Tadzhik. SSR, vol. 29, Is. 1, pp. 16–20„ (in Russian).

27. Rakhmonov, Z. Kh., 1995, “On the distribution of the values of Dirichlet characters and their applications”, Proc. Steklov Inst. Math., vol. 207, pp. 263–272.

28. Rakhmonov, Z. Kh., 1986 “The least Goldbach number in an arithmetic progression”, Izv. Akad. Nauk Tadzhik. SSR. Otdel. Fiz.-Mat., Khim. i Geol. Nauk, № 2(100), pp. 103-106, (in Russian).

29. Huxley, M. N., 1971, “On the difference between consecutive primes”, Inventiones mathematicae, vol. 15, Is. 2, pp. 164–170.

30. Fridlander, Dzh. B., & Gong, K., & Shparlinskii, I. E., 2010, “Character sums over shifted primes”, Math. Notes, vol. 88, Is. 3-4, pp. 585-598. doi:10.1134 S0001434610090312.

31. Rakhmonov, Z. Kh., 2013, “Distribution of values of Dirichlet characters in the sequence of shifted primes”, Doklady Akademii nauk Respubliki Tajikistan, vol. 56, № 1, pp. 5-9, (in Russian).

32. Rakhmonov, Z. Kh., 2013, “Distribution of values of Dirichlet characters in the sequence of shifted primes”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., vol. 13, Is. 4(2), pp. 113-117, (in Russian).

33. Rakhmonov, Z. Kh., 2014, “Sums of characters over prime numbers”, Chebyshevskii Sb., vol. 15, Is. 2, pp. 73-100, (in Russian).

34. Rakhmonov, Z. Kh., 2017, “Sums of values of nonprincipal characters over a sequence of shifted primes”, Proc. Steklov Inst. Math., vol. 299, pp. 219–245.

35. Rakhmonov, Z. Kh., 2017, “On the estimation of the sum the values of Dirichlet characterin a sequence of shifted primes”, Doklady Akademii nauk Respubliki Tajikistan, vol. 60, no 9, pp. 378-382, (in Russian).

36. Rakhmonov Z.Kh. Sums of Values of Nonprincipal Characters over Shifted Primes. (2018) In: Pintz J., Rassias M. (eds) Irregularities in the Distribution of Prime Numbers. pp 187-217. Springer, Cham. First Online 05 July 2018, https://doi.org/10.1007/978-3-319-92777-0_10.

37. Montgomery, Hugh L., 1971, “Topics in Multiplicative Number Theory”, Vol. 227. Springer-Verlag, Berlin-New York, 1971. ix+178 pp.

38. Vaughan, R.O., 1975, “Mean value theorems in prime number theory”, J.London Math. Soc., vol. s2-10, Is. 2, pp. 153-162, https://doi.org/10.1112/jlms/s2-10.2.153

39. Rakhmonov, Z. Kh., 1990, “The distribution of Hardy-Littlewood numbers in arithmetic progressions”, Mathematics of the USSR-Izvestiya, vol. 34, Is. 1, pp. 213-228, http://dx.doi.org/10.1070/IM1990v034n01ABEH000621.

40. Pan Chengdong, & Pan Chengbiao, 1991,“Foundation to Analytic Number Theory”, Science Press, Beijing, 1991, (in Chinese).

41. Rakhmonov, Z. Kh., 1994, “Theorem on the mean value of ????(????,????) and its applications”, Russian Academy of Sciences. Izvestiya Mathematics, vol. 43, Is. 1, pp. 49–64. doi.org/10.1070/IM1994v043n01ABEH001558

42. Rakhmonov, Z. Kh., 1994, “Mean values of the Chebyshev function”, Russ. Acad. Sci., Dokl., Math., vol. 48, Is. 1, pp. 85-87. http://www.zentralblatt-math.org/zmath/search/?an=Zbl0818.11030

43. Rakhmonov, Z. Kh., 1995, “A mean-value theorem for Chebyshev functions”, Russian Academy of Sciences. Izvestiya Mathematics, vol. 44, Is. 3, pp. 555–569. doi.org/10.1070/IM1995v044n03ABEH001613.

44. Rakhmonov, Z. Kh., 1996, “The mean-value theorem in prime number theory”, Doklady Mathematics, vol. 54, Is. 1, pp. 597-598. https://zbmath.org/?q=an

45. Timofeev, N. M., 1988, “Distribution in the mean of arithmetic functions in short intervals in progressions”, Mathematics of the USSR-Izvestiya, vol. 30, Is. 2, pp. 315–335. doi.org/10.1070/IM1988v030n02ABEH001013.

46. Linnik, U. V., !946, “A new proof of the Goldbach–Vinogradow theorem”, Rec. Math. [Mat. Sbornik] N.S., vol. 19(61), Is. 1, pp. 3–8.

47. Hardy, G. H., & Wright, E. M., 1954, An introduction to theory of numbers, 3rd ed. Oxford, at the Clarendon Press, 1954. xvi+419 pp.

48. Babaev, G., 1958, “Remark on a paper of Davenport and Heilbronn”, Uspehi Mat. Nauk, vol. 13, Is. 6(84), pp. 63–64.

49. Haselgrove C. B., 1951, “Some theorems in the analitic theory of number”, J. London Math. Soc., vol. 26, pp. 273-277.

50. Statulevicius, V., 1955, "On the representation of odd numbers as the sum of three almost equal prime numbers Univ. Mokslo Darbai. Mat. Fiz. Chem. Mokslu Ser, vol. 3, pp. 5-23.

51. Pan Chengdong, Pan Chengbiao, 1990, “On estimations of trigonometric sums over primes in short intervals (III)”, Chinese Ann. of Math., vol. 2. pp. 138-147.

52. Zhan, T., 1991, “On the Representation of large odd integer as a sum three almost equal primes”, Acta Math Sinica. New ser., vol. 7, Is. 3. pp. 135 – 170.

53. Liu, J., & Zhan, T., 1999, “Estimation of exponential sums over primes in short intervals I”, Monatshefte fur Mathematik, vol. 127, Is. 1, pp. 27-41.

54. Liu, J., & Zhan, T., 2000, “Hua’s Theorem on Prime Squares in Short Intervals”, Acta Mathematica Sinica. English Series, vol. 16, Is. 4. pp. 669-690.

55. Liu J., & Lu, G., Zhan, T., 2006, “Exponential sums over primes in short intervals”, Science in China: Series A Mathematics, vol. 49, Is. 5, pp. 611-619. doi:10.1007/s11425-006-0611-x

56. Hua, L. K., 1938, “Some results in the additive prime number theory”, Quart. J. Math., vol. 9, Is. 1, pp. 68-80.

57. Kumchev, A. V., 2012, “On Weyl sums over primes in short intervals”, “Arithmetic in Shangrila”—Proceedings of the 6th China-Japan Seminar on Number Theory. Series on Number Theory and Its Applications, vol. 9, Singapore: World Scientific, pp. 116–131.

58. Yao, Y., 2014, “Sums of nine almost equal prime cubes”, Frontiers of Mathematics in China, vol. 9, Is. 5. pp. 1131-1140. doi:10.1007/s11464-014-0384-4.

59. Rakhmonov, Z. Kh., & Rakhmonov, F. Z., 2016, “Estimation of short cubic exponential sums with prime numbers in minor arcs”, Doklady Akademii nauk Respubliki Tajikistan, vol. 59, no 7-8, pp. 273-277, (in Russian).

60. Rakhmonov, Z. Kh.,& Rakhmonov, F. Z., 2017, “Short Cubic Exponential Sums over Primes”, Proceedings of the Steklov Institute of Mathematics, vol. 296, pp. 211–233. doi.org/10.1134/S0081543817010175

61. Jutila, M., 1991, “Mean value etstimates for exponential sums with applications to ????-functions”, Acta Arithmetica, vol. 57, Is. 2. pp. 93-114.

62. Rakhmonov, Z. Kh., & Rakhmonov, F. Z., Ismatov S. N., 2013, “Estimate of sums of short exponential sums over prime numbers”, Doklady Akademii nauk Respubliki Tajikistan, vol. 56, no 12, pp. 937-945, (in Russian).

63. Rakhmonov, Z. Kh.,& Rakhmonov, F. Z., 2014, “Sum of short exponential sums over prime numbers”, Doklady Mathematics, vol. 90, No 3, pp. 699–700. doi.org/10.1134/S1064562414070138.

64. Vaughan, R. C., 1981, “Some remarks in Weyl sums”, Colloquia Math. Soc. J´anos Bolyai, 34 Topics in classical number theory, Budapest, North Holland (1984), pp. 1585-1602.

65. Vaughan, R.C., 1986, “On Waring’s problem for cubes”, J. Reine Angew. Math., vol. 365, pp. 122-170.

66. Rakhmonov, Z. Kh., 2003, “Estermann’s ternary problem with almost equal summands”, Mathematical Notes, vol. 74, Is. 4, pp. 534-542. doi.org/10.1023/A:1026199928464.

67. Rakhmonov, Z. Kh., & Shokamolova, J. A., 2009, “Short quadratic Weil’s exponential sums”, Izvestiya Akademii nauk Respubliki Tajikistan. Otdeleniye fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk, № 2(135), pp. 7-18, (in Russian).

68. Rakhmonov, Z. Kh., 2014, “The Estermann cubic problem with almost equal summands“, Mathematical Notes, vol. 95, Is. 3-4, pp. 407–417. doi.org/10.1134/S0001434614030122.

69. Rakhmonov, Z. Kh., & Mirzoabdugafurov, K. I., 2008, “On estimates of G. Weil’s short cubic sums”, Doklady Akademii nauk Respubliki Tajikistan, vol. 51, no 1, pp. 5-15, (in Russian).

70. Rakhmonov, Z. Kh., & Azamov A.Z., Mirzoabdugafurov, K. I., 2010, “An estimate short exponential Weyl’s sums fourth degree”, Doklady Akademii nauk Respubliki Tajikistan, vol. 53, no 10, pp. 737-744, (in Russian).

71. Rakhmonov, Z. Kh., & Nazrubloev, N. N., Rakhimov, A.O., 2015, “Short Weyl sums and their applications”, Chebyshevskii Sbornik, vol. 16, Is. 1, pp. 232–247.

72. Rakhmonov, Z. Kh., 2013, “Short Weyl sums”, Uchenyye zapiski Orlovskogo universiteta. Seriya yestestvennyye, tekhnicheskiye i meditsinskiye nauki, no. 6, part 2, pp. 194–203.

73. Rakhmonov, Z. Kh., & Ozodbekova, N. B., 2011, “An estimate short exponential Weyl’s sums”, Doklady Akademii nauk Respubliki Tajikistan, vol. 54, no 4, pp. 257-264, (in Russian).

74. Rakhmonov, Z. Kh., & Fozilova, D. M., 2012, “About the ternary problem with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, vol. 55, no 6, pp. 433-440, (in Russian).

75. Rakhmonov,F. Z., & Rakhimov, A. O., 2015, “On an additive problem with almost equal summands”, Issledovaniya po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam. Izdatel’stvo: Saratovskiy natsional’nyy issledovatel’skiy gosudarstvennyy universitet im. N.G. Chernyshevskogo, ISSN: 1810-4134, no 8, pp. 87–89.

76. Rakhimov, A. O., 2015, “Asymptotic formula in the fourth-degree Esterman problem with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, vol. 58, no 9, pp. 769-771, (in Russian).

77. Rakhmonov, Z. Kh., & Mirzoabdugafurov, K. I., 2008, “Waring’s problem for cubes with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, vol. 51, no 2, pp. 83-86, (in Russian).

78. Rakhmonov, Z. Kh., & Azamov A.Z., 2011, “An asymptotic formula in Waring’s problem for fourth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, vol. 54, no 3, pp. 34-42, (in Russian).

79. Rakhmonov, Z. Kh., & Nazrubloev, N. N., 2014, “Waring’s problem for fifth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, vol. 57, no 11-12, pp. 823-830, (in Russian).

80. Rakhmonov, Z. Kh., & Ozodbekova, N. B., Shokamolova, J. A., 2013, “On the uniform distribution modulo a unit of the values of quadratic polynomial whose argument takes its values from the short interval”, Doklady Akademii nauk Respubliki Tajikistan, vol. 56, no 4, pp. 261-264, (in Russian).

81. Selberg, A., 1942, “On the zeros Riemann zeta function”, Shr. Norske Vid. Akad. Oslo, vol. 10, pp. 1-59.

82. Karatsuba, A. A., 1984, “On the zeros of the function ????(????) On short intervals of the critical line”, Mathematics of the USSR-Izvestiya, vol. 24, Is. 3, pp. 523-537, doi.org/10.1070/IM1985v024n03ABEH001246.

83. Karatsuba, A. A., 1985, A. A. Karatsuba, “The Riemann zeta function and its zeros”, Russian Math. Surveys, vol. 40, Is. 5, pp. 23–82, doi.org/10.1070/RM1985v040n05ABEH003682.

84. Heath Brown D.R., 1979, “The fourth power moment of the Riemann zeta function”, Proceedings of the London Mathematical Society, vol. s3-38, Is. 3, pp. 385-422, doi.org/10.1112/plms/s3-38.3.385.

85. Zhan Tao, 1992, “On the mean square of Dirichlet ????-functions”, Acta Mathematica Sinica, vol. 8, Is. 2, pp. 204–224.

86. Rakhmonov, Z. Kh., 1994, “Estimate of the density of the zeros of the Riemann zeta function”, Russian Math. Surveys, vol. 49, Is. 2, pp. 168–169, doi.org/10.1070/RM1994v049n02ABEH002225.

87. Rakhmonov, Z. Kh., 2006, “Zeros of the Riemann zeta function in short intervals of the critical line”, Chebyshevskii Sbornik, vol. 7, Is. 1(17), pp. 263-269.

88. Huxley, M. N., 2003, “Sums and Lattice Points III”, Proceedings of the London Mathematical Society, vol. 87, Is. 3, pp. 591-609, doi.org/10.1112/S0024611503014485.

89. Rakhmonov, Z. Kh. & Khayrulloev, Sh. A., 2006, “Distance between the next zeros of Riemann’s zeta-function in the critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 49, no. 5, pp. 393 – 400.

90. Rakhmonov, Z. Kh. & Khayrulloev, Sh. A. 2009, “The neibour zero of the Riemann’s zeta-function laying on a critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 52, no. 5, pp. 331 – 337.

91. Rakhmonov, Z. Kh. & Aminov, A. S., 2019, “On the zeros of an odd order of the Davenport – Heilbron function in short intervals of the critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 62, no. 3-4, pp. 133-138.


Review

For citations:


Chubarikov V.N. About the life and activities of academician Zarullo Husenovich Rakhmonov. Chebyshevskii Sbornik. 2019;20(4):6-31. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-4-6-31

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)