Preview

Chebyshevskii Sbornik

Advanced search

Stochastic trends based on fuzzy mathematics

https://doi.org/10.22405/2226-8383-2019-20-3-92-106

Abstract

Currently, there are a number of ways to determine trends and extremes in stochastic time series, which is not surprising, since time series trends are a fundamental characteristic of the dynamics of the process behind it.
Real stochastic trends are not at all like ideal mathematical ones, because they contain violations. This does not bother the researcher, who initially has an adaptive perception of the fundamental properties of extremeness, continuity, connectedness, trend, etc. He will understand when the violation is insignificant and the trend continues, and when the violation interrupts the trend.
In this paper, we propose a new approach to the recognition of stochastic trends, based on the mathematical construction of regression derivatives for a finite time series. Trends are sought using the derivative from the scenario of classical mathematical analysis.

About the Authors

Sergey Martikovich Agayan
Геофизический центр РАН (г. Москва)
Russian Federation

doctor of physical and mathematical Sciences, Principal research scientist, Geophysical Center RAS (Moscow)



Shamil Rafekovich Bogoutdinov

Russian Federation

candidate of physical and mathematical Sciences, Leading research scientist, Geophysical Center RAS; Senior research scientist, Schmidt Institute of Physics of the Earth RAS (Moscow)



Dmitry Alfredovich Kamaev

Russian Federation

doctor of engineering, Chief of laboratory, NPO «Taifun», Russian Federal Survey for Hydro meteorology and Environmental Monitoring (Obninsk).



Mikhail Nikolaevich Dobrovolsky

Russian Federation

candidate of physical and mathematical Sciences, Senior research scientist, Geophysical Center RAS (Moscow)



References

1. Gumbel, Е. J. 1958, “Statistics of extremes“, N. Y., Columbia Univ. Press, 375 p.

2. Leadbetter, M. R., Lindgren, G., Rootzen, H. 1983, “Extremes and Related Properties of Random Sequences and Processes“, Springer Series in Statistics, 336 p.

3. Lyubushin, A. A. 2007, “Analysis of data from geophysical and environmental monitoring systems“, M: Mir, 228 p.

4. Mallat, S. 1999, “A Wavelet Tour of Signal Processing“, Academic Press, 620 p.

5. Averkin, A. N., Batyrshin, I. Z., Blishun, A. F., Silov, V. B., Tarasov, V. B. 1986, “Fuzzy sets in control and artificial intelligence models“/ Edited by D. A. Pospelov. M.: Nauka, 312 p.

6. Ayvazyan S. A., Buchstaber V. M., Yenyukov I. S., Meshalkin L. D. 1989, “Applied Statistics: Classification and Dimension Reduction (edited by Ayvazyan S. A.)“, M: Finansy i statistika, 606 p.

7. Agayan, S. M., Soloviev, A. A., Bogoutdinov, Sh. R., Nikolova, Y. I. 2019, “Regression derivatives and their application in the study of geomagnetic jerks“, Geomagnetism and aeronomy, vol. 59, no. 3, pp. 383–392, DOI: 10.1134/S0016794019030027.

8. Agayan, S. M., Bogoutdinov, Sh. R., Krasnoperov, R. I. 2018, “Short introduction into DMA“, Russian journal of Earth sciences, vol. 18, ES2001, DOI: 10.2205/2018ES000618.


Review

For citations:


Agayan S.M., Bogoutdinov Sh.R., Kamaev D.A., Dobrovolsky M.N. Stochastic trends based on fuzzy mathematics. Chebyshevskii Sbornik. 2019;20(3):92-106. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-92-106

Views: 328


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)