Preview

Chebyshevskii Sbornik

Advanced search

About the method of estimating critical determinants within the question of the estimation of the constant of simultaneous diophantine approximations

https://doi.org/10.22405/2226-8383-2019-20-2-22-38

About the Author

Yurij Aleksandrovich Basalov

Russian Federation


References

1. Basalov Yu. A. 2019, “On estimating the constant of simultaneous Diophantine approximation“, Available at: https://arxiv.org/abs/1804.05385.

2. Cassels J. W. S. 1955, “Simultaneous Diophantine approximation“, J. London Math. Soc., Vol. 30, pp. 119–121.

3. Cusick T. W. Estimates for Diophantine approximation constants // Journal of Number Theory. 1980. Vol. 12(4). P. 543–556.

4. Davenport. H. 1955, “On a theorem of Furtwängler“, J. London Math. Soc. , Vol. 30, pp. 186–195.

5. Finch S. R. 2003, Mathematical Constants, Cambridge University Press (Encyclopedia of Mathematics and its Applications, Book 94).

6. Furtwängler H. 1927, “Über die simulatene Approximation von Irrationalzahlen. I“, Math. Ann., Vol. 96, pp. 169–175.

7. Furtwängler H. 1928, “Über die simulatene Approximation von Irrationalzahlen. II“, Math. Ann., Vol. 99, pp. 71–83.

8. Hurwitz A. 1891, “Über die angenaherte Darstellung der Irrationalzahlen durch rationale Briiche“, Math. Ann., Vol. 39, pp. 279–284.

9. Krass S. 1985, “Estimates for ????-dimensional Diophantine approximation constants for n ≥ 4“, J. Number Theory , Vol. 20, Is. 2, pp. 172–176.

10. Krass S. 1985, “The N -dimensional diophantine approximation constants“, Australian Mathematical Society , Vol. 32, Is. 2, pp. 313–316.

11. Mack J. M. 1977, “Simultaneous Diophantine approximation“, J. Austral. Math. Soc. A., Vol. 24, pp. 266–285.

12. Nowak W. G. 1981, “A note on simultaneous Diophantine approximation“, Manuscr. Math., Vol. 36, pp. 33-46.

13. Nowak W. G. 1993, “A remark concerning the s-dimensional simultaneous Diophantine approximation constants“, Graz. Math. Ber., Vol. 318. pp. 105–110.

14. Nowak W. G. 2014, “Lower bounds for simultaneous Diophantine approximation constants“, Comm. Math, Vol. 22, Is. 1, pp. 71–76.

15. Nowak W. G. 2016, “Simultaneous Diophantine approximation: Searching for analogues of Hurwitz’s theorem“, In: T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, Springer, Switzerland, pp. 181–197.

16. Basalov Yu. A., 2018, "On the history of estimates of the constant of the best joint Diophantine approximations" , Chebyshevskii sbornik, vol. 19, no. 2, pp. 388–405. https://doi.org/10.22405/2226-8383-2018-19-2-394-411

17. Basalov Yu. A., 2019, "Estimation of the constant of the best simultaneous Diophanite approximations for ???? = 5 and ???? = 6" Chebyshevskii sbornik, vol. 20, no. 2, pp. 0-0. https://doi.org/10.22405/2226-8383-00000000000000000000000000

18. Cassels J. W. S. 1965, An Introduction to the Geometry of Numbers, Mir.

19. Moshchevitin N. G. 2002, “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations“, Proceedings of the Steklov Mathematical Institute, Vol. 239, pp. 268–274.

20. Schmidt W. M. 1983, Diophantine Approximation, Mir.

21. A Database for Number Fields. Available at: http://galoisdb.math.upb.de/


Review

For citations:


Basalov Yu.A. About the method of estimating critical determinants within the question of the estimation of the constant of simultaneous diophantine approximations. Chebyshevskii Sbornik. 2019;20(2):22-38. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-2-22-38

Views: 467


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)