Preview

Chebyshevskii Sbornik

Advanced search

WARING’S PROBLEM INVOLVING NATURAL NUMBERS OF A SPECIAL TYPE

https://doi.org/10.22405/2226-8383-2014-15-3-31-47

Abstract

In 2008–2011, we solved several well–known additive problems such that Ternary Goldbach’s Problem, Hua Loo Keng’s Problem, Lagrange’s Problem with restriction on the set of variables. Asymptotic formulas were obtained for these problems. The main terms of our formulas differ from ones of the corresponding classical problems. In the main terms the series of the form 2πim(ηN−0,5k(a+b)) sink πm(b − a) σk(N, a, b) = e . πkmk |m|<∞ appear. These series were investigated by the authors. Suppose that k > 2 and n > 1 are naturals. Consider the equation n n n x1 + x2 + . . . + xk = N (1)in natural numbers x1, x2, . . . , xk. The question on the number of solutions of the equation (1) is Waring’s problem. Let η be the irrational algebraic number, n > 3, 2n + 1, if 3 6 n 6 10, k > k0 = 2[n2(2 log n + log log n + 5)], if n > 10. In this report we represent the variant of Waring’s Problem involving natural numbers such that a 6 {ηxn} < b, where a and b are arbitrary real numbers i of the interval [0, 1). Let J(N) be the number of solutions of (1) in natural numbers of a special type, and I(N) be the number of solutions of (1) in arbitrary natural numbers. Then the equality holds J(N) ∼ I(N)σk(N, a, b). The series σk(N, a, b) is presented in the main term of the asymptotic formula in this problem as well as in Goldbach’s Problem, Hua Loo Keng’s Problem.

 

About the Authors

S. A. Gritsenko
Финансовый университет при Правительстве РФ, МГУ имени М. В. Ломоносова Белгородский государственный университет
Russian Federation


N. N. Motkina
Финансовый университет при Правительстве РФ, МГУ имени М. В. Ломоносова Белгородский государственный университет
Russian Federation


References

1. Виноградов И. М. Представление нечетного числа суммой трех простых чисел // ДАН СССР. 1937. Т. 15. С. 169–172.

2. Hua L. K. On the representation of numbers as the sum of powers of primes // Math. Z. 1938. 44. P. 335–346.

3. Хуа Ло–ген. Метод тригонометрических сумм и его применения в теории чисел. М.: Мир, 1964. 194 с.

4. Kloosterman H. D. On the representation of numbers in the form ax2 + by2 + cz2 + dt2 // Acta mathematica. 1926. 49. P. 407–464.

5. Gritsenko S., Motkina N. Ternary Goldbach’s Problem Involving Primes of a Special type. Режим доступа: http://arXiv.org/abs/0812.4606 – 25 Dec 2008

6. Gritsenko S., Motkina N. Hua Loo Keng’s Problem Involving Primes of a Special Type. Режим доступа: http://arXiv.org/abs/0812. 4665 – 26 Dec 2008

7. Гриценко С.А., Мотькина Н.Н. Представление натуральных чисел суммами четырех квадратов целых чисел специального вида // Современная математика и ее приложения. 2010. Т. 67. С. 71–77.

8. Гриценко С.А., Мотькина Н.Н. О вычислении некоторых особых рядов // Чебышевский сборник. 2011. Т.12, вып. 4. С. 85–92

9. D. Hilbert Beweis fu¨r die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n–ter Potenzen (Waringsches Problem) // Math. Annalen. 1909. 67. P. 281–300.

10. Hardy G. Collected papers of G. H. Hardy, including joint papers with J. E. Littlewood and others, ed. by a committee appointed by the London Mathematical Society, vol. I. Oxford: Clarenon Press, 1966.

11. Hardy G. H., Littlewood J. E. A new solution of Waring, s problem, Quart. J. Math., 48, (1919), 272–293.

12. Hardy G., Littlewood J. Some problems of «Partitio Numerorum»: I A new solution of Waring, s problem // G¨ottingen nachrichten. 1920. P. 33–54.

13. Hardy G., Littlewood J. Some problems of «Partitio Numerorum»: III On the expression of a number as a sum of primes // Acta. Math. 1923. 44. P. 1–70.

14. Hardy G., Littlewood J. Some problems of «Partitio Numerorum»: V A further contribution to the study of Goldbach’s problem // Proc. Lond. Math. Soc. 1923. (2) 22. P. 46–56.

15. Виноградов И. М. Sur un theoreme general de Waring //Мат. сб. —1922– 1924. —Т. 31. —C. 490–507. Рез. на рус. яз.

16. Карацуба А. А. Основы аналитической теории чисел. —М.: Наука, 1983. 240 с.

17. Бухштаб А. А. Теория чисел. —М.: Просвещение, 1966. —384 c.

18. Архипов Г. И., Садовничий В. А., Чубариков В. Н. Лекции по математическому анализу. —М.: Высш. шк., 1999. 695 с.

19. Вон Р. Метод Харди–Литтлвуда. —М.: Мир, 1985. 184 с.

20. Виноградов И. М. Метод тригонометрических сумм в теории чисел. М.: Наука, 1980. 160 с.


Review

For citations:


Gritsenko S.A., Motkina N.N. WARING’S PROBLEM INVOLVING NATURAL NUMBERS OF A SPECIAL TYPE. Chebyshevskii Sbornik. 2014;15(3):31-47. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-3-31-47

Views: 614


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)