Preview

Chebyshevskii Sbornik

Advanced search

О моноиде квадратичных вычетов

https://doi.org/10.22405/2226-8383-2018-19-3-95-108

Abstract

В работе изучается дзета-функция моноида квадратичных вычетов по простому модулю $p$. Моноид квадратичных вычетов задается равенством
$$
M_{p,2}=\left\{a\in\mathbb{N}\left| \left(\frac{a}{p}\right)=1\right.\right\}=\bigcup_{\nu=1}^{\frac{p-1}{2}}\left(r_\nu+p\mathbb{N}_0\right),
$$
где $\mathbb{N}_0=\{0\}\bigcup\mathbb{N}$ и $r_1<r_2<\ldots<r_{\frac{p-1}{2}}$ --- наименьшая положительная система квадратичных вычетов по модулю $p$, соответственно, $r_{\frac{p+1}{2}}<\ldots<r_{p-1}$ --- наименьшая положительная система квадратичных невычетов по модулю $p$.

Множество простых элементов моноида $M_{p,2}$ состоит из множества простых чисел $\mathbb{P}_p^{(1)}$ и множества псевдопростых чисел $\mathbb{P}_p^{(2)}\cdot\mathbb{P}_p^{(2)}$:
$$
P(M_{p,2})=\mathbb{P}_p^{(1)}\bigcup\left(\mathbb{P}_p^{(2)}\cdot\mathbb{P}_p^{(2)}\right),
$$
где множество простых чисел $\mathbb{P}$ разбивается на два бесконечных подмножества $\mathbb{P}_p^{(\nu)}$ $(\nu=1,2)$ и одноэлементное множество $\{p\}$:
$$
\mathbb{P}=\mathbb{P}_p^{(1)}\bigcup\mathbb{P}_p^{(2)}\bigcup\{p\}, \quad \mathbb{P}_p^{(\nu)}=\left\{q\in\mathbb{P}\left|\left(\frac{q}{p}\right)=3-2\nu\right.\right\} \quad (\nu=1,2).
$$
Моноид $M_{p,2}$ разлагается в произведение двух взаимно простых моноидов $M_{p,2}=M_{p,2}^{(1)}\cdot$ $\cdot M_{p,2}^{(2)}$, где
$$
M_{p,2}^{(\nu)}=\left\{a\in M_{p,2}\left| a=\prod_{j=1}^{n}q_j^{\alpha_j}, \, q_j\in\mathbb{P}_p^{(\nu)} \right.\right\}, \quad \nu=1,2.
$$
В статье изучаются свойства функции распределения простых элементов $\pi_{M_{p,2}^{(\nu)}}(x)$ для $\nu=1,2$. Отметим, что $\pi_{M_{p,2}}(x)=\pi_{M_{p,2}^{(1)}}(x)+\pi_{M_{p,2}^{(2)}}(x)$. Показано, что
$$
\pi_{M_{p,2}^{(1)}}(x)=\frac{1}{2}\li x+O\left(\frac{x^{\beta_1}}{2}+\frac{p-1}2xe^{-c_9\sqrt{\ln x}}\right)
$$
и
$$
\pi_{M_{p,2}^{(2)}}(x)=\frac{x\ln\ln x}{2\ln x}+O\left(\frac{x}{(1-\beta_1)\ln{x}}\right),
$$
где $\beta_1$ --- исключительный ноль исключительного характера $\chi_1$ по модулю $p$.

В заключении рассмотрены актуальные задачи с дзета-функциями моноидов натуральных чисел, требующие дальнейшего исследования.

About the Authors

Николай Добровольский
Тульский государственный университет; Тульский государственный педагогический университет им. Л. Н. Толстого.
Russian Federation


Алина Калинина
Московский государственный университет имени М. В. Ломоносова.
Russian Federation


Михаил Добровольский
Геофизический центр РАН
Russian Federation


Николай Добровольский
Тульский государственный педагогический университет им. Л. Н. Толстого
Russian Federation


Review

For citations:


 ,  ,  ,   . Chebyshevskii Sbornik. 2018;19(3):95-108. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-3-95-108

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)