Preview

Chebyshevskii Sbornik

Advanced search

Интегралы и индикаторы субгармонических функций. I

https://doi.org/10.22405/2226-8383-2018-19-2-272-303

Abstract

В первой части нашего исследования рассматриваются общие вопросы теории функций плотности и $\rho$-полуаддитивных функций, которые часто используются
в теории роста целых и субгармонических функций и в других разделах математики. В теории функций плотности важной и часто цитируемой является теорема Полиа о существовании максимальной и минимальной плотности. Утвеpждение 3 теоpемы \ref{T6} или теоpему \ref{T7} статьи можно pассматpивать как pаспpостpанение теоpемы Полиа на более шиpокий класс
функций. Функции плотности обладают некоторыми свойствами полуаддитивности.
Некоторые вопросы теории функций плотности и $\rho$-полуаддитивных функций
изложены в первой части нашего исследования. Центральной здесь является теорема \ref{T2-6}, касающаяся
условий существования в нуле производной $\rho$-полуаддитивной функции и
оценка интегралов
$
\int\limits_a^bf(t)\,d\nu(t)
$
через функции плотности для функции $\nu$. Отметим, что функция $\nu$ у нас,
вообще говоря, не является функцией распределения некоторой счетно-аддитивной
меры и написанный интеграл нужно понимать как интеграл Римана-Стилтьеса, а не
как интеграл Лебега по мере $\nu$.

About the Authors

Константин Малютин
Курский государственный университет
Russian Federation


Михаил Кабанко
Курский государственный университет
Russian Federation


Таисия Малютина
Курский государственный университет
Russian Federation


Review

For citations:


 ,  ,   . Chebyshevskii Sbornik. 2018;19(2):272-303. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-2-272-303

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)