Preview

Chebyshevskii Sbornik

Advanced search

The zeta function of monoids with a given abscissa of absolute convergence

https://doi.org/10.22405/2226-8383-2018-19-2-142-150

Abstract

The paper continues consideration of a new class of the Dirichlet --- Zeta function of monoids of natural numbers. The main task solved in this paper is to construct a monoid of natural numbers for which the Zeta function of this monoid has a given abscissa of absolute convergence.

Previously, the author solved a similar problem of constructing a set of natural numbers for which the corresponding Zeta function has a given abscissa of absolute convergence.

To solve the problem for the Zeta function of the monoid of natural numbers there are certain difficulties associated with the need to build a sequence of primes that meet certain requirements for the growth of terms.

The notion $\sigma$"=sequences $\mathbb{P}_\sigma$ of primes was introduced, whose terms satisfy the inequality $n^\sigma\le p_n<(n+1)^\sigma.$

With the help of a theorem of Ingham with a cubic growth of Prime numbers was able to build a $\sigma$"=a sequence of primes for any $\sigma\ge3$. For the corresponding Zeta function of a monoid generated by a given $\sigma$ " =sequence of primes, the abscissa of absolute convergence is $\frac{1}{\sigma}$. Thus, with the help of Ingam's theorem it was possible to solve the problem for the abscissa values of absolute convergence from 0 to $\frac{1}{3}$. For such monoids it is possible to obtain an asymptotic formula for the Prime number distribution function $\pi_{\mathbb{P}_\sigma}(x)$: $\pi_{\mathbb{P}_\sigma}(x)=x^{\frac{1}{\sigma}}+\theta(x)$, where $-2<\theta(x)<-1$.

To prove the existence of a monoid of natural numbers, for whose Zeta function the abscissa value of absolute convergence is from $\frac{1}{3}$ to 1, it was necessary to use Rosser's Prime number theorem. For this purpose, the concept $\sigma$"=sequences of the second kind was introduced.

In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.

About the Author

Nikolai Nikolaevich Dobrovolsky
Tula State University; Tula state pedagogical University. L. N. Tolstoy.
Russian Federation
candidate of~physical and mathematical sciences, assistant of the department of applied mathematics and computer science, associate Professor of the Department of algebra, mathematical analysis and geometry


References

1. Bombieria E., Ghoshb A., 2011, “Around the Davenport–Heilbronn function”, {\it Uspekhi Mat. Nauk}, 66:2(398) pp. 15--66.

2. Voronin S. M., 2006, {\it Izbrannye trudy: Matematika. Pod red. A. A. Karacuby}, Izd-vo MGTU im. N. Je. Baumana, Moskva, 480 p.

3. Voronin S. M., Karacuba A. A., 1994, {\it Dzeta-funkcija Rimana}, Izd-vo Fiz-matlit, Moskva, 376 p.

4. Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrova I. Yu., Balaba I. N., Dobrovol'\-skii N. N., Dobrovol'skii N. M., Dobrovol'skaya L. P., Rodionov A. V., Pikhtil'kova O. A., 2017, "Number-theoretic method in approximate analysis" {\it Che\-by\-shevskii Sbornik} vol. 18, № 4. pp. 6--85.

5. Dobrovol'skaya, L. P., Dobrovol'skii, M. N., Dobrovol'skii, N. M. & Dobrovol'skii, N. N. 2012, Mnogomernye teoretiko-chislovye setki i reshyotki i algoritmy poiska optimal'nykh koehffitsientov [Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients], Izdatel'stvo Tul'skogo gosudarstvennogo pedagogicheskogo universiteta im. L.N. Tolstogo, Tula, Russia.

6. Dobrovol'skaya, L. P., Dobrovol'skii, M. N., Dobrovol'skii, N. M. & Dobrovol'skii, N. N. 2012, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, vol. 13, no. 4(44), pp. 4–107.

7. Dobrovol'skij M. N., 2007, "Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok", {\it Doklady akademii nauk}, vol 412, № 3, pp. 302--304.

8. Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol'skaya L. P., Bocharova O. E., 2016, "On hyperbolic Hurwitz zeta function", {\it Chebyshevskii Sbornik}, vol 17, № 3 pp. 72--105.

9. Dobrovolsky N. N., 2017, "The zeta-function is the monoid of natural numbers with unique factorization", {\it Chebyshevskii Sbornik}, vol. 18, № 4. P. 187--207.

10. Dobrovolsky N. N., 2018, "On monoids of natural numbers with unique factorization into prime elements", {\it Chebyshevskii Sbornik}, vol. 19, № 1. P.

11. N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, 2018, "About <<zagrobelna the series>> for the zeta function of monoids with exponential sequence of simple", {\it Chebyshevskii sbornik}, vol. \tom, no. \iss, pp. 106--123.

12. Trost E., 1959, "Prime numbers", {\it Izd-vo Fiz-matlit, Moskva}, 511 p.

13. Davenport H., Heilbronn H., 1936, "On the zeros of certain Dirichlet series", {\it J. London Math. Soc.} Vol. 11. pp. 181--185.

14. Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dob\-rovolsky N. N., 2014, "On Hyperbolic Zeta Function of Lattices", {\it In: Continuous and Dis\-tributed Systems. Solid Mechanics and Its Applications}, Vol. 211. pp. 23--62. DOI:10.1007/978-3-319-03146-0\_2.

15. Rosser B., 1938, "The $n$-th Prime is greater than $n\log n$", {\it Proc. London. math. Soc.} Vol. 45. pp. 21--44.


Review

For citations:


Dobrovolsky N.N. The zeta function of monoids with a given abscissa of absolute convergence. Chebyshevskii Sbornik. 2018;19(2):142-150. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-2-142-150

Views: 713


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)