Preview

Chebyshevskii Sbornik

Advanced search

On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type

https://doi.org/10.22405/2226-8383-2018-19-2-80-89

Abstract

For $0<p<\infty$, we investigate the interrelation between the Nikolskii
constant for trigonometric polynomials of order at most $n$
\[
\mathcal{C}(n,p)=\sup_{T_{n}\ne 0}\frac{\|T_{n}\|_{\infty}}{\|T_{n}\|_{p}}
\]
and the Nikolskii constant for entire functions of exponential type at most~$1$
\[
\mathcal{L}(p)=\sup_{f\ne 0}\frac{\|f\|_{\infty}}{\|f\|_{p}}.
\]

Recently E.~Levin and D.~Lubinsky have proved that
\[
\mathcal{C}(n,p)=\mathcal{L}(p)n^{1/p}(1+o(1)),\quad n\to \infty.
\]
M.~Ganzburg and S.~Tikhonov have extend this result on the case of
Nikolskii--Bernstein constants.

We prove inequalities
\[
n^{1/p}\mathcal{L}(p)\le \mathcal{C}(n,p)\le (n+\lceil
p^{-1}\rceil)^{1/p}\mathcal{L}(p),\quad n\in \mathbb{Z}_{+},\quad 0<p<\infty,
\]
which improve the result of Levin and Lubinsky. The proof follows our old
approach based on properties of the integral Fejer kernel. Using this approach
we proved earlier estimates for $p=1$
\[
n\mathcal{L}(1)\le \mathcal{C}(n,1)\le (n+1)\mathcal{L}(1).
\]

Using such inequalities, we can estimate the constant $\mathcal{L}(p)$ solving
approximately $\mathcal{C}(n,p)$ for large $n$. To do this we use recent
results of V.~Arestov and M.~Deikalova, who expressed the Nikolskii constant
$\mathcal{C}(n,p)$ using the algebraic polynomial $\rho_{n}$ that deviates
least from zero in the space $L^{p}$ on the segment $[-1,1]$ with the weight
$(1-t)v(t)$, where $v(t)=(1-t^{2})^{-1/2}$ is the Chebyshev weight. As
consequence, we refine estimates of the Nikolskii constant $\mathcal{L}(1)$ and
find~that
\[
1.081<2\pi \mathcal{L}(1)<1.082.
\]
To compare previous estimates were $1.081<2\pi \mathcal{L}(1)<1.098$.

About the Authors

Dmitry Viktorovich Gorbachev
Tula State University
Russian Federation
professor of the department of applied mathematics and computer science, doctor of physical and mathematical sciences


Ivan Anatol'evich Martyanov
Tula State University
Russian Federation
graduate student of the department of applied mathematics and computer science


References

1. Arestov V. V. Inequality of different metrics for trigonometric polynomials //Math. Notes. 1980. Vol. 27, no. 4. P. 265--269.

2. Arestov V., Deikalova M. Nikol'skii inequality between the uniform norm and$L_{q}$-norm with ultraspherical weight of algebraic polynomials on an interval// Comput. Methods Funct. Theory. 2015. Vol. 15, no. 4. P. 689--708.

3. Arestov V., Deikalova M. Nikol'skii inequality between the uniform norm and$L_{q}$-norm with Jacobi weight of algebraic polynomials on an interval //Analysis Math. 2016. Vol. 42, no. 2. P. 91--120.

4. Ash J. M., Ganzburg M. An Extremal Problem for Trigonometric Polynomials //Proc. Amer. Math. Soc. 1999. Vol. 127, no. 1. P. 211--216.

5. Ganzburg M., Tikhonov S. On Sharp Constants in Bernstein--NikolskiiInequalities // Constr. Approx. 2017. Vol. 45, no. 3. P. 449--466.

6. Gorbachev D. V. An integral problem of Konyagin and the $(C,L)$-constants ofNikol'skii // Proc. Steklov Inst. Math. Suppl. 2005. Vol. 2. P. S117--S138.

7. Levin E., Lubinsky D. $L_p$ Chritoffel functions, $L_p$ universality, andPaley--Wiener spaces // J. D'Analyse Math. 2015. Vol. 125. P. 243--283.

8. Levin E., Lubinsky D. Asymptotic behavior of Nikolskii constants forpolynomials on the unit circle // Comput. Methods Funct. Theory. 2015. Vol. 15,no. 3. P. 459--468.

9. Stein E. M., Weiss G. Introduction to Fourier analysis on Euclidean spaces.N. J.: Princeton, 1971.


Review

For citations:


Gorbachev D.V., Martyanov I.A. On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type. Chebyshevskii Sbornik. 2018;19(2):80-89. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-2-80-89

Views: 868


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)