Preview

Chebyshevskii Sbornik

Advanced search

Mathematical methods of analysis and forecast of earthquake aftershocks: the need to change the paradigm

https://doi.org/10.22405/2226-8383-2018-19-4-227-242

Abstract

Analysis and forecast of aftershocks of large earthquakes in the world practice is currently based exclusively on stochastic models of aftershock process. This makes it possible to use statistical methods of analysis, and also to apply the ”scenario” approach in forecasts by repeatedly generating random sequences of aftershocks and counting the frequency of repetition of the events of interest. Studies on the Russian Science Foundation project ”Development of information system for automatic seismic hazard assessment after large earthquakes based on geophysical monitoring” in 2016-2018 showed however that the effectiveness of such approaches has significant limitations. In this paper I give a critical review of statistical methods for the analysis and forecast of aftershocks, an interpretation of the effectiveness limits of forecasts using standard approaches, provide the rationale for the need to change the paradigm. As one of the search directions, the application of Discrete Mathematical Analysis (DMA) methods developed by Academician A.D. Gvishiani and his scientific school. An obvious advantage of this approach is demonstrated by the example of a simple algorithm for identification of aftershocks using fuzzy comparisons.

About the Author

P. N. Shebalin
Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS
Russian Federation

Shebalin Petr Nikolaevich — D. Sci.; Chief scientist



References

1. M. Baiesi and M. Paczuski. 2004, ”Scale–free networks of earthquakes and aftershocks”, Phys. Rev. E, vol. 69.

2. S.V. Baranov, V.A. Pavlenko, and P.N. Shebalin. 2019, ”Forecasting aftershock activity: 4. Estimating maximum magnitude of subsequent aftershocks”, Izvestiya, Physics of the Solid Earth, vol 55, no. 1.

3. S.V. Baranov and P.N. Shebalin. 2018, ”Forecasting aftershock activity: 3. B˚ath dynamic law”, Izvestiya, Physics of the Solid Earth, vol. 54, no. 6, pp. 926–932.

4. S.V. Baranov and P.N. Shebalin. 2018, ”Global statistics of aftershocks of large earthquakes: independence of times and magnitudes”, Journal of Volcanology and Seismology, vol. 12, no. 6.

5. M. Bath. 1965 ”Lateral inhomogeneities in the upper mantle”, Tectonophysics, vol. 2, pp. 483–514.

6. Sh.R. Bogoutdinov, S.M. Agayan, A.D. Gvishiani, E.M. Graeva, M.V. Rodkin, J. Zlotnicki, and J.L. LeMouel. 2007, ”Fuzzy logic algorithms in the analysis of electrotelluric data with reference to monitoring of volcanic activity”, Izvestiya. Physics of the Solid Earth, vol. 43, no. 7, pp. 597–609.

7. S.D. Davis and C. Frohlich. 1991, ”Single-link cluster analysis of earthquakes aftershocks: decay laws and regional variations”, J. Geophys. Res., vol. 96, pp. 6335–1350.

8. J. Gardner and L. Knopoff. 1974, ”Is the sequence of earthquakes in Southern California with aftershocks removed Poissonian?” Bull. Seismol. Soc. Am., vol. 5, pp.1363–1367.

9. E.I. Gordeev, S.A. Fedotov, and V.N. Chebrov. 2013, ”Detailed seismological investigations in Kamchatka during the 1961–2011 Period: main results”. Journal of Volcanology and Seismology, vol. 7, no. 1, pp.1–15.

10. B. Gutenberg and C.F. Richter. 1954, ”Seismicity of the Earth”. Princeton Univ. Press.

11. A.D. Gvishiani, S. Agayan, B. Dzeboev, and I. Belov. 2017, ”Algorithm barrier with single learning class for strong earthquake–prone areas recognition”, Geoinformatics Research Papers: Proceedings of Geophysical Center RAS, vol. 5, no. 1, p.95.

12. A.D. Gvishiani, S.M. Agayan, and Sh.R. Bogoutdinov. 2008, ”Fuzzy recognition of anomalies in time series”, Doklady Earth Sciences, vol. 421, no. 1, pp.838–842.

13. A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, J. Zlotnicki, and J. Bonnin. 2008, ”Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series”, Cybernetics and Systems Analysis, vol. 44, no. 3, pp.309–323.

14. A.D. Gvishiani, S.M. Agayan, B.A. Dzeboev, and I.O. Belov. 2017, ”Recognition of strong earthquake–prone areas with a single learning class”, Doklady Earth Sciences, vol. 474, no. 1, pp.546–551.

15. A.D. Gvishiani, M.N. Dobrovolsky, S. Agayan, and B. Dzeboev. 2013, ”Fuzzy–based clustering of epicenters and strong earthquake–prone areas”, Environmental Engineering and Management Journal, vol. 12, no. 1, pp.1–10.

16. A.D. Gvishiani, B. Dzeboev, and S. Agayan. 2013, ”A new approach to recognition of the strong earthquake–prone areas in the Caucasus”, Izvestiya. Physics of the Solid Earth, vol. 49, no.6, pp.747–766.

17. A.D. Gvishiani, B. Dzeboev, and S. Agayan. 2016, ”FCAZM intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts”, Izvestiya. Physics of the Solid Earth, vol. 52, no.4, pp.461–491.

18. A.D. Gvishiani, B.A. Dzeboev, N.A. Sergeeva, I.O. Belov, and A.I. Rybkina. 2018, ”Significant earthquake–prone areas in the Altai–Sayan region”, Izvestiya, Physics of the Solid Earth, vol. 54, no.3, pp. 406–414.

19. A.D. Gvishiani, B.A. Dzeboev, N.A. Sergeeva, and A.I. Rybkina. 2017 ”Formalized clustering and significant earthquake-prone areas in the Crimean peninsula and Northwest Caucasus”, Izvestiya. Physics of the Solid Earth, vol. 53, no. 3, pp. 353–365.

20. Y. Kagan and D. Jackson. 1991, ”Long–term earthquake clustering”, Geophys. J. Intern., vol.104, pp.117–133.

21. R.G. Kulchinsky, E.P. Kharin, I.P. Shestopalov, A.D. Gvishiani, S.M. Agayan, and Sh.R. Bogoutdinov. 2010, ”Fuzzy logic methods for geomagnetic events detections and analysis”, Russian Journal of Earth Sciences, vol. 11, no.4, pp.1–6.

22. D. Marsan and O. Lengline. 2010, ”A new estimation of the decay of aftershock density with distance to the mainshock”, Journal of Geophysical Research: Solid Earth, vol. 115(B9).

23. G. Molchan and O. Dmitrieva. 1992, ”Aftershock identification: methods and new approaches”, Geophys. J. Int., vol. 109, pp.501–516.

24. Y. Ogata. 1989, ”Statistical models for standard seismicity and detection of anomalies by residual analysis”, Tectonophysics, vol. 169, pp. 159–174.

25. Y. Ogata. 1999, ”Seismicity analysis through point-process modeling; a review”, PAGEOPH, vol. 155, pp.471–508.

26. F. Omori. 1894, ”On the aftershocks of earthquake”. J. Coll. Sci. Imp. Univ. Tokyo, vol.7, pp.111–200.

27. P. Reasenberg. 1985, ”Second-order moment of central California seismicity, 1969-1982” J. Geophys. Res., vol. 90, pp.5479–5495.

28. P.A. Reasenberg and L.M. Jones. 1989, ”Earthquake hazard after a mainshock in California”. Science, vol. 242, pp.1173–1176.

29. W.U. Savage. 1972, ”Microearthquake clustering near Fairview Peak, Nevada, and in the Nevada seismic zone”, J. Geophys. Res., vol. 77, no. 35, pp. 7049–7056.

30. P.N. Shebalin, S.V. Baranov, and B.A. Dzeboev. 2018, ”The law of the repeatability of the number of aftershocks”, Doklady Earth Sciences, vol. 481, no.1, pp.963–966.

31. V.B. Smirnov. 2009, ”Prognostic anomalies of seismic regime: methodical basis of data preprocessing”, Geofisicheskiye Issledovaniya, vol. 10, no.2, pp.7–22.

32. T. Utsu. 1961, ”A statistical study on the occurrence of aftershocks”, Geophys. Mag., vol.30, pp.521–605.

33. I. Zaliapin, A. Gabrielov, V. Keilis-Borok, and H. Wong. 2008, ”Clustering analysis of seismicity and aftershock identification”, Phys. Rev. Lett., vol. 101, no.1, pp.1–4.

34. Ilya Zaliapin and Yehuda Ben-Zion. 2013, ”Earthquake clusters in Southern California I: Identification and stability”, Journal of Geophysical Research: Solid Earth, vol. 118, no.6, pp.2847–2864.

35. Ilya Zaliapin and Yehuda Ben-Zion. 2016, ”A global classification and characterization of earthquake clusters”, Geophysical Journal International, vol. 207, no.1, pp.608–634.

36. J. Y. Zhuang, K. Ogata, and D. Vere-Jones. 2002, ”Stochastic declustering of space–time earthquake occurrences”, J. Am. Stat. Assoc., vol. 97, pp.369–380.

37. J. Zlotnicki, J.L. LeMouel, A. Gvishiani, S. Agayan, V. Mikhailov, S. Bogoutdinov, R. Kanwar, and P. Yvetot. 2005, ”Automatic fuzzy–logic recognition of anomalous activity on long geophysical records: application to electric signals associated with the volcanic activity of La Fournaise volcano (R´eunion island)”, Earth and Planetary Science Letters, vol. 234, no.1–2, pp. 261–278.


Review

For citations:


Shebalin P.N. Mathematical methods of analysis and forecast of earthquake aftershocks: the need to change the paradigm. Chebyshevskii Sbornik. 2018;19(4):227-242. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-4-227-242

Views: 903


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)