Methods of geoinformatics and fuzzy mathematics in geophysical data analysis
https://doi.org/10.22405/2226-8383-2018-19-4-194-214
Abstract
Herein we give an overview of the basic mathematical concepts and constructions that underlie the methods of geoinformatics developed by the scientific school under the leadership of RAS academician A. Gvishiani. It is important to note that we understand geoinformatics more widely than the study and application of geographic information systems. Geoinformatics includes research on the creation of methods and algorithms that make it possible to automate the problem solution in the field of geosciences using observational data. The solution is understood as an adequate modelling of expert’s logic, who performs data analysis and decision making manually. It is the observation systems and recorded data on the processes in the Earth’s interior and near-Earth space that form the basis for fundamental studies in the field of geoinformatics and other geosciences. Particularly, under the leadership of RAS academician A. Gvishiani the system of geomagnetic field observations has been significantly developed. This article is mostly devoted to the mathematical apparatus, used to analyze observational data in order to subsequently identify new regularities in the processes of the Earth and near-Earth space.
About the Author
A. A. SolovievRussian Federation
Soloviev Anatoly Aleksandrovich — D.Sc., Corresponding member of the Russian Academy of Sciences, Deputy Director for Research, Chief of laboratory, Principal research scientist, GC RAS; Leading research scientist, Schmidt IPhE RAS
References
1. Gvishiani A., Lukianova R., Soloviev An., Khokhlov A. Survey of Geomagnetic Observations Made in the Northern Sector of Russia and New Methods for Analysing Them // Surveys in Geophysics. 2014. Vol.35. № 5. P.1123-1154.doi: 10.1007/s10712-014-9297-8
2. Gvishiani A. D., Lukianova R. Yu. Geoinformatics and observations of the Earth’s magnetic field: The Russian segment // Izvestiya-Physics of the Solid Earth. 2015. Vol. 51, Issue 2. P. 157-175. doi:10.1134/S1069351315020044
3. Gvishiani A.D., Starostenko V.I., Sumaruk Y.P., Soloviev A.A., Legostaeva O.V. A decrease in solar and geomagnetic activity from cycle 19 to cycle 24 // Geomagnetism and Aeronomy. 2015. Vol. 55. No 3. P. 299-306. DOI:10.1134/S0016793215030093
4. Gvishiani A. D., Lukianova R. Yu., Soloviev A.A. Geomagnetic field analysis and directional drilling problem in the Arctic region // Gornyi Zhurnal (Mining Journal), 2015. No 10. P. 94-99. doi:10.17580/gzh.2015.10.17
5. Gvishiani A, Soloviev An., Krasnoperov R., Lukianova R. Automated Hardware and Software System for Monitoring the Earth’s Magnetic Environment. // Data Science Journal. 2016. 15, p.18. DOI: 10.5334/dsj-2016-018
6. Gvishiani A.. Sidorov, R. Lukianova R, Soloviev An. Geomagnetic activity during St. Patrick’s Day storm inferred from global and local indicators // Russ. J. Earth Sci., 16, ES6007, doi:10.2205/2016ES000593
7. Laverov N.P., Leonov Yu. G., Makosko A.A., Bondur V.G., Gvishiani A.D., Gliko A.O., Goldin S.V., Gordeev E.I., Didenko A.N., Kulikov E.A., Levin B.V., Lobkovsky L.I., Malovichko A.A., Sobolev G.A. Solutions for Modernization and Development of System for Seismological Monitoring and Earthquake Forecast // Problems of National Security. Expert Report. Analysis Findings. Suggestions / Under the general editorship of ac. Laverov N.P. M.: Nauka. 2008. Pp. 206-232
8. Zadeh L.A. Fuzzy sets // Information and Control. 1965. № 8, 338-353.
9. Gvishiani A., Dubois J. Artificial intelligence and dynamic systems for geophysical applications. Springer-Verlag, Paris. 2002. 350 p.
10. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. 5th edition. M.: Nauka. 1981. Pp. 544
11. Gvishiani A.D. et al. Mathematical Methods of Geoinformatics. II. Fuzzy-Logic Algorithms in the Problems of Abnormality Separation in Time Series // Cybernetics and Systems Analysis. 2003. V. 39. № 4. Pp. 555–563. DOI:10.1023/B:CASA.0000003505.56410.4f
12. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Tikhotsky S.A., Hinderer J., Bonnin J., Diament M. Algorithm FLARS and recognition of time series anomalies // System Research & Information Technologies. 2004. №. 3. P.7-16.
13. Soloviev A., Sh. Bogoutdinov, S. Agayan, R. Redmon, T. M. Loto’aniu, H. J. Singer (2018), Automated recognition of jumps in GOES satellite magnetic data, Russ. J. Earth Sci., 18, ES4003, doi:10.2205/2018ES000626
14. S.M. Agayan, A.A. Soloviev, S.R. Bogoutdinov, Y.I. Nikolova. Regression derivatives and their application to geomagnetic jerk studies // Geomagnetism and Aeronomy, 2019
15. Gvishiani A.D., Agayan S.M., Bogoutdinov S.R. Mathematical Methods of Geoinformatics. I. A New Approach to Clusterization // Cybernetics and Systems Analysis. 2002. V. 38. № 2. Pp. 238–254. DOI: 10.1023/A:1016347513346
16. Gvishiani A.D., Mikhailov V.O, Agayan S.M., Bogoutdinov Sh., Tikhotsky S.A., Diament M., Galdeano A. Artificial intelligence technique in potential field and other geophysical studies // Conseil de l’Europe. Cahiers du Centre Europeen de Geodynamique et de Seismologie. GrandDuchy of Luxemburg. 2003. Vol. 20. P.63-69
17. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Solovyov A.A.: “Discrete Mathematical Analysis And Applications Geology And Geophysics” // Vestnik KRAUNC. Earth Sciences. 2010. №2. Pp. 104-122
18. Agayan S.M, Soloviev A.A. Recognition of dense areas in metric spaces basing on crystallization, System Research and Information Technologies, No.2, 2004, p. 7-23
19. Gvishiani A.D., Dzeboev B.A., Agayan S.M. FCAZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts // Izvestiya, Physics of the Solid Earth. 2016. Vol. 52, Issue 4. P. 461-491. DOI: 10.1134/S1069351316040017
20. Gvishiani A., Dobrovolsky M., Agayan S., Dzeboev B. Objective classification of epicenters and recognition of the earthquake-prone areas in California // Geoinformatika. 2013. № 2. P. 44−57
21. Gvishiani A., Dzeboev B., Agayan S. A new approach to recognition of the earthquake-prone areas in the Caucasus // Izvestiya, Physics of the Solid Earth. 2013. Vol. 49. Is. 6. P. 747–766. DOI: 10.1134/S1069351313060049
22. Gvishiani A., Dobrovolsky M., Agayan S., Dzeboev B. Fuzzy-based clustering of epicenters and strong earthquake-prone areas // Environmental Engineering and Management Journal. 2013. Vol.12. No. 1. P. 1-10.
23. Gvishiani A.D., Dzeboev B.A., Sergeyeva N.A., Rybkina A.I. Formalized Clustering and the Significant Earthquake-Prone Areas in the Crimean Peninsula and Northwest Caucasus // Izvestiya. Physics of the Solid Earth. 2017. Vol. 53. Is. 3. P. 353–365. DOI:10.1134/S106935131703003X
24. Gvishiani A.D., Agayan S.M., Dzeboev B.A., Belov I.O. Recognition of Strong Earthquake– Prone Areas with a Single Learning Class // Doklady Earth Sciences. 2017. Vol.474. Part 1. P.546–551. DOI: 10.1134/S1028334X17050038
25. Gvishiani A.D., Dzeboev B.A., Belov I.O., Sergeyeva N.A., Vavilin E.V. Successive Recognition of Significant and Strong Earthquake-Prone Areas: The Baikal–Transbaikal Region // Doklady Earth Sciences. 2017. Vol. 477. Part 2. P. 1488–1493. DOI: 10.1134/S1028334X1712025X
26. Gvishiani A.D., Dzeboev B.A., Sergeyeva N.A., Belov I.O., Rybkina A.I. Significant Earthquake-Prone Areas in the Altai–Sayan Region // Izvestiya, Physics of the Solid Earth. 2018. Vol. 54. Is. 3. P. 406–414. DOI: 10.1134/S1069351318030035
27. Gvishiani A.D., Mikhailov V.O., Agayan S.M., Bogoutdinov SH.R., Graeva E.M., Diament M., Galdeano A. Artificial Intelligence Algorithms for Magnetic Anomaly Clustering // Izvestiya. Physics of the Solid Earth. 2002. V. 38. № 7. Pp. 545-559
28. Mikhailov V., Galdeano A., Diament M., Gvishiani A., Agayan S., Bogoutdinov S., Graeva E., and Sailhac P. Application of artificial intelligence for Euler solutions clustering // Geophysics. 2003. Vol. 68. № 1. P.168-180.
29. Solov’ev A.A., Shur D.Yu., Gvishiani A.D., Mikhailov V.O., Tikhotskii S.A. (2005), Determination of the magnetic moment vector using cluster analysis of the local linear pseudoinversion of ΔT anomalies, Doklady Earth Sciences, Vol. 404, N 7, pp. 1068-1071
30. Widiwijayanti C., Mikhailov V., Diament M., Deplus C., Louat R., Tikhotsky S., Gvishiani A. Structure and evolution of the Molucca Sea area: constraints based on interpretation of a combined sea-surface and satellite gravity dataset // Earth and Planetary Science Letters. 2003. Vol. 215. P.135-150.
31. Gvishiani A.D., Agayan S.M., Bogoutdinov S.R. Fuzzy recognition of anomalies in time series // Doklady Earth Sciences. 2008. V. 421. № 1. Pp. 838–842. DOI:10.1134/S1028334X08050292
32. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Zlotnicki J., Bonnin J. Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series // Cybernetics and systems analysis. 2008. Т. 44. No 3. С. 309-323
33. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Graeva E.M., Zlotnicki J., and J. Bonnin. Recognition of anomalies from time series by fuzzy logic methods // Russian Journal of Earth Sciences. 2008. Vol. 10. № 1.С.1-9. ES1001, doi:10.2205/2007ES000278.
34. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, S.R., Kagan, A.I., 2011. Gravitational smoothing of time series. Tr. IMM UrO RAN 17 (2), 62–70
35. Sh.R. Bogoutdinov, A.D. Gvishiani, S.M. Agayan, A.A. Solovyev, E. Kihn, Recognition of Disturbances with Specified Morphology in Time Series. Part 1: Spikes on Magnetograms of the Worldwide INTERMAGNET Network, Izvestiya, Physics of the Solid Earth, 2010, Vol. 46, No. 11, pp. 1004–1016
36. Gvishiani A.D., Soloviev A.A., Agayan S.M., Bogoutdinov Sh.R., Sidorov R.V. Algorithmic system for magnetic record blow recognition // Dinamika Fizicheskih Polei Zemli. M.: Svetoch Plus. 2011. Pp. 297-309
37. A.A. Soloviev, S.M. Agayan, A.D. Gvishiani, Sh.R. Bogoutdinov, A. Chulliat, Recognition of Disturbances with Specified Morphology in Time Series: Part 2. Spikes on 1-s Magnetograms, Izvestiya, Physics of the Solid Earth, 2012, Vol. 48, No. 5, pp. 395–409
38. Soloviev An., Chulliat A., Bogoutdinov S., Gvishiani A., Agayan S., Peltier A., Heumez B. Automated recognition of spikes in 1 Hz data recorded at the Easter Island magnetic observatory // Earth Planets Space. 2012. Vol.64. № 9. P.743-752. Doi:10.5047/eps.2012.03.004
39. A.Soloviev, A.Chulliat, S.Bogoutdinov (2017), Detection of secular acceleration pulses from observatory data, Physics of the Earth and Planetary Interiors, 270 (2017), p. 128-142, doi: 10.1016/j.pepi.2017.07.005
40. Zlotnicki J., Le Mouel J.-L., Gvishiani A., Agayan S., Mikhailov V., Bogoutdinov Sh., Kanwar R., Yvetot P. Automatic fuzzy-logic recognition of anomalous activity on long geophysical records: Application to electric signals associated with the volcanic activity of La Fournaise volcano (Reunion Island) // Earth and Planetary Science Letters. 2005. Vol. 234. P.261-278
41. Bogoutdinov S.R. et al. Fuzzy logic algorithms in the analysis of electrotelluric data with reference to monitoring of volcanic activity // Izvestiya, Physics of the Solid Earth. 2007. V. 43. № 7. Pp. 597–609. DOI: 10.1134/S1069351307070099
42. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R. Discrete mathematical analysis and volcano monitoring // Engineering ecology. 2008. №5. Pp. 26-31
43. Gvishiani A.D., Belov S.V., Agayan S.M., Rodkin M.V., Morozov V.N., Tatarinov V.N., Bogoutdinov Sh.R. Geoinformational technologies: artificial intelligence methods used in Nizhnekans massif tectonical stability assessment // Engineering ecology. 2008. №2. Pp. 3-14
44. Gvishiani A.D., Dzeboev B.A. Assessment of seismic hazard in choosing of a radioactive waste disposal location, Gornyi Zhurnal (Mining Journal), 2015. No 10. P. 39-43, doi:10.17580/gzh.2015.10.07
Review
For citations:
Soloviev A.A. Methods of geoinformatics and fuzzy mathematics in geophysical data analysis. Chebyshevskii Sbornik. 2018;19(4):194-214. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-4-194-214