On classical number-theoretic nets
https://doi.org/10.22405/2226-8383-2018-19-4-118-176
Abstract
The paper considers the hyperbolic Zeta function of nets with weights and the distribution of error values of approximate integration with modifications of nets. Considered: parallelepipedal nets M(~a,p), consisting of points
Mk =({a1k/p },...,{ask/p }) (k = 1,2,...,p);
non-uniform nets M(P), the coordinates of which are expressed via power functions modulo P:
Mk =({k/P},{k2/P}...,{ks/P}) (k = 1,2,...,P),
where P = p or P = p2 and p — odd prime number;
generalized uniform nets M(~n) of N = n1 ·...·ns points of the form
M k =({k1/n1},{k2/n2}...,{ks/ns}) (kj = 1,2,...,nj (j = 1,...,s));
algebraic nets introduced by K. K. Frolov in 1976 and generalized parallelepipedal nets, the study of which began in 1984.
In addition, the review of p-nets is considered: Hammersley, Halton, Faure, Sobol, and Smolyak nets.
In conclusion, the current problems of applying the number-theoretic method in geophysics are considered, which require further study.
About the Authors
I. Yu. RebrovaRussian Federation
Rebrova Irina Yuryevna — candidate of physical and mathematical Sciences, associate professor, dean of the faculty of mathematics, physics and computer science
V. N. Chubarikov
Russian Federation
Chubarikov Vladimir Nikolaevich — doctor of physical and mathematical sciences, professor, head of the department of mathematical and computer methods of analysis, dean of the mechanics and mathematics faculty
N. N. Dobrovolsky
Russian Federation
Dobrovolsky Nikolai Nikolaevich — candidate of physical and mathematical sciences, assistant of the department of applied mathematics and computer science
М. Добровольский
M. N. Dobrovolsky
Russian Federation
Dobrovolsky Mikhail Nikolaevich — candidate of candidate of physical and mathematical sciences, senior researcher
References
1. Babenko, K.I. 1986, Osnovy chislennogo analiza [Fundamentals of numerical analysis], Nauka, Moscow, Russia.
2. Bakhvalov, N.S. 1959, “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, no. 4, pp. 3–18.
3. Bocharova, L.P. 2006, “On the boundary of some classes of functions”, Naukoemkoe obrazovanie. Traditsii. Innovatsii. Perspektivy, Sbornik mezhvuzovskikh nauchnykh statej, pp.198–202.
4. Bykovskij, V.А 1995, Ehkstremal’nye kubaturnye formuly dlya anizotropnykh klassov [Extremal cubature formulas for anisotropic classes], Preprint, Khabarovsk, Russia.
5. Hecke E. 1940, Lectures on algebraic number theory. , M. – L.: Gostekhizdat.
6. Gauss K. 1959, The Works on the theory of numbers. Translations of B. B. Demyanov, under the General editorship of I. M. Vinogradov, comments bn. Delaunay. - Moscow: Publishing house of the USSR, 978 p.
7. Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrov I. Yu., Balaba I. N., Dobrovol’skii N. N., Dobrovol’skii N. M., Dobrovol’skaya L. P., Rodionov A. V., Pikhtil’kova O. A., 2017, "Number-theoretic method in approximate analysis" Chebyshevskii Sbornik vol. 18, № 4. pp. 6–85.
8. Dobrovol’skaya, L. P., Dobrovol’skii, N. M. & Simonov, А.S. 2008, “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, vol. 9, no. 1(25), pp. 185–223.
9. Dobrovol’skii, M. N. 2003, “Estimates of sums over a hyperbolic cross”, Izvestie Tul’skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, vol.9, no. 1, pp. 82-90.
10. Dobrovol’skii, M. N. 2004, “The optimum coefficients of the combined meshes”, Chebyshevskij sbornik, vol. 5, no. 1(9), pp. 95–121.
11. Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Kiseleva, O.V. 2002, “On the product of generalized parallelepipedal grids of integer lattices”, Sovremennye problemy matematiki, mekhaniki, informatiki:Tezisy dokladov Vserossijskoj nauchnoj konferentsii, Tula, Russia, pp. 22–23.
12. Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Kiseleva, O.V. 2002, “On the product of generalized parallelepipedal grids of integer lattices”, Chebyshevskij sbornik, vol. 3, no. 2(4), pp. 43–59.
13. Dobrovol’skii, N. M. 1984, “An effective proof of Roth’s quadratic deviation theorem”, Uspekhi matematicheskikh nauk, vol. 39(123), pp. 155–156.
14. Dobrovol’skii, N. M. 1984, “Estimates of variance of modified grids Hammersly Rota”, Dep. v VINITI, no. 1365– 84.
15. Dobrovol’skii, N. M. 1984, “Evaluation of generalized variance parallelepipedal grids”, Dep. v VINITI, no. 6089–84.
16. Dobrovol’skii, N. M. 1984, “The hyperbolic Zeta function of lattices”, Dep. v VINITI, no. 6090–84.
17. Dobrovol’skii, N. M. 1984, “On quadrature formulas in classes Eα s (c) and Hα s (c)”, Dep. v VINITI, no. 6091–84.
18. Dobrovol’skii, N. M. & Bocharova, L.P. 2006, “Fifty years of the number-theoretic method in the approximate analysis”, Naukoemkoe obrazovanie. Traditsii. Innovatsii. Perspektivy, Sbornik mezhvuzovskikh nauchnykh statej, pp.189–198.
19. Dobrovol’skii, N. M. & Korobov, N. M. 2001, “The optimal coefficients for mixed meshes”, Chebyshevskij sbornik, vol. 2, pp. 41–53.
20. Dobrovol’skii, N. M. & Manokhin, E.V. 1998, “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 4, no. 3, pp. 56–67.
21. Dobrovol’skii, N. M., Manokhin, E.V., Rebrova, I. YU. & Аkkuratova, S.V.1999, “On some properties of normed spaces and algebras of nets”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 5, no. 1, pp. 100–113.
22. Dobrovolsky N. M. Manokhin E. V., Rebrov I. Yu., Rosena A. L. 2001, “Of the continuity of the Zeta function of mesh with weights”, Izvestiya TulGU. Ser. Mathematics. Mechanics. Informatics. Vol. 7, no. 1. — Tula, pp. 82–86.
23. Dobrovolsky N. N. 2011, “PODPS TMK: Hyperbolic parameter of grids with weights”, Multiscale modeling of structures and nanotechnology: proceedings of the international scientific-practical conference. Tula, 3-7 October 2011. Tula: publishing house of Tula state pedagogical University named after L. N. Tolstoy. P. 266-267.
24. Kiseleva O. V. 2007, “The challenge Korobov for modified grids of Smolyak”, Chebyshevskii sbornik. Vol. 8, issue. 4 (24). P. 50–104.
25. Korobov, N.M. 1959, “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.
26. Korobov, N.M. 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.
27. Korobov, N.M. 1994, “Quadrature formulas with combined grids”, Matematicheskie zametki, vol. 55, no. 2, pp. 83–90.
28. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.
29. Lokutsievskij, O. V. & Gavrikov, M. B. 1995, Nachala chislennogo analiza [The beginning of numerical analysis], TOO “Yanus”, Moscow, Russia.
30. Nikitin, А.N., Rusakova, E.I., Parkhomenko, EH.I., Ivankina, T.I. & Dobrovol’skij, N.M. 1988, “On the reconstruction of the paleotectonic stress according to the piezoelectric texture of the rocks”, Izvestiya АN SSSR. Fizika Zemli, no. 9, pp. 66–74.
31. Nikitin, А.N., Rusakova, E.I., Parkhomenko, EH.I., Ivankina, T.I. & Dobrovol’skij, N.M. 1988, “Reconstruction of Paleotectonic Stresses Using. Data on Piezoelectric Texstures of Rocks”, Izvestiya Earth Physics, vol 24, no 9. pp. 728–734.
32. Smolyak, S.А. 1960, “Interpolation and quadrature formulas on classes Wα s and Eα s ”, Doklady Аkademii nauk SSSR, vol. 131, no. 5, pp. 1028–1031.
33. Smolyak, S.А. 1963, “Quadrature and interpolation formulas on tensor products of some classes of functions”, Doklady Аkademii nauk SSSR, vol. 148, no. 5, pp. 1042–1045.
34. Smolyak, S.А. 1966, On optimal recovery of functions and functionals from them, Ph.D. Thesis, Moscow State University, Moscow, USSR.
35. Sobol’, I.M. 1969, Mnogomernye kvadraturnye formuly i funktsii Khaara [Multidimensional quadrature formulas and Haar functions], Nauka, Moscow, USSR.
36. Frolov, K.K. 1976, “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Аkademii nauk SSSR, vol. 231, no.4, pp. 818–821.
37. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.
38. Chen, W.W.L. 1980, “On irregularities of distribution II”, Mathematika, vol. 27, no. 2. P. 153–170.
39. Chen, W.W.L. 1983, “On irregularities of distribution II”, Quart. J.Math. Oxford (2). 34, pp. 257–279.
40. Davenport, H. 1956, “Note on irregularities of distribution”, Mathematika, vol. 3, pp. 131–135.
41. Faure, H. 1982, “Discrepance de suites associees a un systeme denumeration (en dimention s)”, Acta Arith, vol. 41, pp. 337–351.
42. Halton, J. H. 1960, “On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals”, Numerische Math, vol. 27, no. 2, pp. 84–90.
43. Hammersley, J.M. 1960, “Monte-Carlo methods for sobving multivariable problems”, Ann. New York Acad. Sci., vol. 86, 844–874.
44. Roth, K.F. 1954, “On irregularities of distribution”, Mathematika, 1, pp. 73–79.
45. Roth, K.F. 1980, “On irregularities of distribution - IV”, Acta Arithm, 37. pp. 65–75.
46. Schmidt Wolfgang, M. 1972, “Irregularities of distribution -VII”, Acfa Arithm, 21, pp. 45–50.
47. Schmidt Wolfgang M. 1977, “Irregularities of distribution - X”, Number Theory and Algebra (H.Zassenhaus ed.), pp. 311–329.
48. Weyl H. 1916, “On the uniform distribution of Numbers mod. one”, Math. Ann., vol. 77, pp. 313–352.
Review
For citations:
Rebrova I.Yu., Chubarikov V.N., Dobrovolsky N.N., , Dobrovolsky M.N. On classical number-theoretic nets. Chebyshevskii Sbornik. 2018;19(4):118-176. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-4-118-176