Preview

Chebyshevskii Sbornik

Advanced search

On some fibinomial identities

https://doi.org/10.22405/2226-8383-2018-19-2-

Abstract

Fibinomial identity is identity that combine Fibonacci numbers and binomial or multinomial coefficients.
In this paper, for obtaining new fibinomial identities we consider determinants and permanents for some families of lower Toeplitz–Hessenberg matrices $H_n=(h_{ij})$,
where $h_{ij}=0$ for all $j>i+1$, $h_{ij}=a_{i-j+1}$, and $a_{i,i+1}=2$, having various translates of the Fibonacci numbers $F_n$ for the nonzero entries.

These determinant and permanent formulas may also be rewritten as identities involving sums of products of Fibonacci numbers and multinomial coefficients.
For example, for $n\geq1$, the following formula holds
$$
\sum_{s_1+2s_2+\cdots+ns_n=n}(-1)^{s_1+\cdots+s_n}{s_1+\cdots+s_n\choose s_1,\ldots, s_n}\left(\frac{F_2}{2}\right)^{s_1}\left(\frac{F_4}{2}\right)^{s_2}\cdots\left(\frac{F_{2n}}{2}\right)^{s_n}=
\frac{1-4^n}{3\cdot 2^n},
$$
where ${s_1+\cdots+s_n\choose s_1,\ldots, s_n}=\frac{(s_1+\cdots+s_n)!}{s_1!\cdots s_n!}$ is multinomial coefficient, and the summation is over non\-negative integers
$s_j$ satisfying Diophantine equation $s_1 +2s_2 +\cdots +ns_n=n$.

Also, we establish connection formulas between Jacobsthal, Pell, Pell-Lucas numbers and Fibonacci numbers using Toeplitz-Hessenberg determinants.

About the Author

Taras Petrovich Goy
Vasyl Stefanyk Precarpathian National University (Ukraine)
Ukraine
associate professor of differential equations and applied mathematics department


References

1. Benjamin, A. T., Quinn, J. J. & Rouse J. A. 2004,``Fibinomial identities'', In: \textit{Applications of Fibonacci numbers}, vol. 9, Kluwer Academic Publishers, Dordrecht, pp. 19--24.doi: 10.1007/978-0-306-48517-6\_3

2. Koshy, T. 2001, ``Fibonacci and Lucas Numbers and Applications''. John Wiley & Sons, New York.

3. Horn, R. A. & Johnson, C. R. 2012, ``Matrix Analysis''. Cambridge University Press, New York.

4. Sloane, N. J. A., editor. The On-Line Encyclopedia of Integer Sequences.\\ Available at https://ocis.org.

5. Civciv, H. 2008,``A note on the determinant of five-diagonal matrices with Fibonacci numbers'', \textit{Int. J. Contemp. Math. Sci.}, vol. 3, no. 9, pp. 419--424.

6. Ipek, A. 2011,``On the determinants of pentadiagonal matrices with the classical Fibo\-nacci, generalized Fibonacci and Lucas numbers'',\textit{Eurasian Math. J.}, vol. 2, no. 2, pp. 60--74.

7. Ipek, A. & Ar\i, K. 2014,``On Hessenberg and pentadiagonal determinants related with Fibo\-nacci and Fibonacci-like numbers'', \textit{Appl. Math. Comput.}, vol. 229, pp. 433--439.doi: 10.1016/j.amc.2013.12.071

8. Janji’c, M. 2010,``Hessenberg matrices and integer sequences'', \textit{J. Integer Seq.}, vol. 13, Article 10.7.8.

9. Kayg\i s\i z, K. & \c Sahin, A. 2012,``Determinant and permanent of Hessenberg matrix and Fibonacci type numbers'', \textit{Gen. Math. Notes}, vol. 9, no. 2, pp. 32--41.

10. \"Ocal, A. A., Tuglu, N. & Altini\c sik, E. 2005, ``On the representation of $k$-generalized Fibonacci and Lucas numbers'', \textit{Appl. Math. Comput.},vol. 170, no. 1, pp. 584--596.

11. Tangboonduangjit, A. & Thanatipanonda, T. 2016, ``Determinants containing powers of generalized Fibonacci numbers'', \textit{J. Integer Seq.}, vol. 19, Article 16.7.1.

12. Goy, T. P. 2017, ``Pro novi formuli dlya chisel Fibonachchi'' [On new formulas for Fibonacci numbers],Materialyi VIII Vseukrainskoy nauchno-tehnicheskoy konferentsii ``Informatika i sistemnyie nauki'' (Proc. VIII Sci.-Tech. Conf. ``Informatics and System Sciences'',Poltava, Ukraine, pp. 51--54. (in Ukrainian)

13. Goy, T. 2017, ``Some combinatorial identities for two-periodic Fibonacci sequence'', Materialyi XII Mezhdunarodnoj konferencii``Fundamentalnyie i prikladnyie problemyi matematiki i informatiki'' (Proc. XII Int. Conf. ``Fundamental and Applied Problems of Mathematics and Informatics''),Makhachkala, Russia, pp. 107--109.

14. Goy, T. 2018, ``O novyh fibinomial'nyh tozhdestvah'' [On new fibinomial identities],Materialy XV Mezhdunarodnoj konferencii ``Algebra, teorija chisel i diskretnaja geometrija: sovremennye problemy i prilozhenija'',posvjashhennoj stoletiju so dnja rozhdenija prof. N. M. Korobova(Proc. XV Int. Conf. ``Algebra, Number Theory and Discrete Geometry: Modern Problems and Applications''), Tula, Russia, pp. 214--217. (in Russian)

15. Muir, T. 1960, ``The Theory of Determinants in the Historical Order of Development''. Vol. 3, Dover Publications, New York.


Review

For citations:


Goy T.P. On some fibinomial identities. Chebyshevskii Sbornik. 2018;19(2):56-66. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-2-

Views: 544


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)