Preview

Chebyshevskii Sbornik

Advanced search

NON-STATIONARY THERMO-DIFFUSION PROCESSES IN FINITE ONE-DIMENSIONAL CRYSTAL

https://doi.org/10.22405/2226-8383-2017-18-3-330-349

Abstract

A periodic one-dimensional harmonic crystal subjected to an instantaneous spatially uniform thermal perturbation is considered. Fast  transitional and long evolutionary processes are observed. Time  dependance of thermal and diffusion characteristics is analyzed.  Influence of the crystal finite size on the transitional and evolutionary  processes is considered. The principal difference in long time behavior  for statistical averages for squares of velocities and squares of displacements is demonstrated.

About the Authors

A. M. Krivtsov
St. Petersburg Polytechnic University Peter the Great
Russian Federation

doctor of physical and mathematical sciences, professor of  RAS, corresponding member of the Russian Academy of Sciences, head of the department of theoretical mechanics



A. S. Murachev
St. Petersburg Polytechnic University Peter the Great
Russian Federation
graduate student


D. V. Tsvetkov
St. Petersburg Polytechnic University Peter the Great
Russian Federation

technician of the department of theoretical mechanics 



References

1. Rieder Z., Lebowitz J. L. and Lieb, E. Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 1967. vol. 8, pp. 1073–1078.

2. Dhar A. Heat Transport in low-dimensional systems. Advanced in Physics. 2008. Vol. 57, No. 5, pp. 457–537.

3. Krivtsov A. M. Energy Oscillations in a One-Dimensional Crystal. Doklady Physics. 2014, Vol. 59, No. 9, pp. 427–430.

4. Krivtsov A. M. Heat transfer in infinite harmonic one dimensional crystals. Doklady Physics. 2015, Vol. 60, No. 9, pp. 407–411.

5. Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer. Edited by S. Lepri. Lecture notes in physics, volume 921. Springer International Publishing, Switzerland. 2016, 418 p.

6. Kuzkin V. A., Krivtsov, A. M. Unsteady heat transfer in harmonic scalar lattices. 2017. ArXiv:1702.08686.

7. Poletkin K. V., Gurzadyan G. G., Shang J., Kulish V. Ultrafast heat transfer on nanoscale in thin gold films. Applied Physics B. 2012. 107 (01), pp. 137–143.

8. Cartlidge E. European xfel to shine as brightest, fastest x-ray source. Science. 2016. Vol. 354, no. 6308, pp. 22—23.

9. Albertazzi B., Ozaki N., Zhakhovsky V. et al. Dynamic fracture of tantalum under extreme tensile stress. Science Advances. 2017. Vol. 3, no. 6.

10. Krivtsov A. M., Morozov N. F. On Mechanical Characteristics of Nanocrystals. Physics of the Solid State. 2002. Volume 44, Issue 12, pp 2260–2265.

11. Goldstein R.V., Morozov N.F. Mechanics of deformation and fracture of nanomaterials and nanotechnology. Physical Mesomechanics. 2007. Vol 10, p. 5-6.

12. Levin V.A., Levitas V.I., Lokhin V.V., Zingerman K.M., Sayakhova L.F., Freiman E.I. Solid-state stress-induced phase transitions in a material with nanodimensional inhomogeneities: Model and computational experiment. Doklady Physics. 2010. Vol. 55, No. 10, pp. 507–511.

13. Indeitsev D.A., Loboda O.S., Morozov N.F., Skubov D.Yu., Shtukin L.V. Selfoscillating mode of a nanoresonator. Physical Mesomechanics. 2016. Vol.19. №5. pp. 23-28.

14. Florencio J., Lee M. H. Exact time evolution of a classical harmonic-oscillator chain. Phys. Rev. A, 1985. Vol. 31, 3231 p.

15. Krivtsov A. M. Deformation and fracture of solids with microstructureй. Moscow, Fizmatlit. 2007. 304 p. (In Russian).

16. Gendelman O. V., Savin A. V. Normal heat conductivity in chains capable of dissociation. Europhys. Lett. 2014. Vol. 106, p. 34004.

17. Savin A. V., Kosevich Y. A. Thermal conductivity of molecular chains with asymmetric potentials of pair interactions. Phys. Rev. E. 2014. Vol. 89, 032102.

18. Berinskii I. E., Slepyan L. I. How a dissimilar-chain system is splitting. Quasistatic, subsonic and supersonic regimes. 2017. arXiv:1704.00046v2.

19. Ashcroft N. W. and Mermin N.D. Solid State Physics. Holt, Rinehart and Winston. 1976. 847 p.

20. Krivtsov A. M. On unsteady heat conduction in a harmonic crystal. 2015. ArXiv:1509.02506.

21. Krivtsov A. M. Dynamics of thermal processes in one-dimensional harmonic crystals. Questions of mathematical physics and applied mathematics. - Proceedings of the seminar timed to the 75th anniversary of prof. E.A. Tropp. 30 September 2015. — SPb.: A.F. Ioffe Physico-Technical Institute , 2016. — pp. 63-81.

22. Yanke E., Emde F., Lesh F. Special functions: the formulas, graphs, tables. Science. 1964, Moscow, 344 p.

23. Abramowitz M. and Stegun I. A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. New York: Dover. 1979. 1046 p.


Review

For citations:


Krivtsov A.M., Murachev A.S., Tsvetkov D.V. NON-STATIONARY THERMO-DIFFUSION PROCESSES IN FINITE ONE-DIMENSIONAL CRYSTAL. Chebyshevskii Sbornik. 2017;18(3):330-349. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-3-330-349

Views: 695


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)