Preview

Chebyshevskii Sbornik

Advanced search

NUMERICAL ESTIMATION OF EFFECTIVE ELASTIC PROPERTIES OF ELASTOMER COMPOSITES UNDER FINITE STRAINS USING SPECTRAL ELEMENT METHOD WITH CAE FIDESYS

https://doi.org/10.22405/2226-8383-2017-18-3-316-329

Abstract

Estimation of effective properties of composite materials is one of the main problems for the composite mechanics. In this article, a method is developed by which the effective nonlinear elastic  properties of elastomer composites (filled rubbers) are estimated  under finite strains. The method is based on numerical solution of  nonlinear elastic boundaryvalue problems for a representative  volume element (RVE) of elastomer composite. Different boundary  conditions are consequently applied to the RVE: nonperiodic  (displacements of the RVE boundary) or periodic (restraints on  displacements of corresponding points of opposite faces of RVE). An obtained stress field is averaged by volume after the solution of an  elastic boundary-value problem. Effective properties are estimated  as a quadratic dependence of the second Piola-Kirchhoff stress  tensor upon the Green strain tensor. This article presents the results of numerical estimation of effective elastic properties of filled  rubbers under finite strains. Numerical calculations were performed  with the help of Fidesys Composite program module, which is a part  of the domestic Fidesys CAE-system, using the finite element method and the spectral element method. Spectral element method  is one of the most effective and modern finite element method  version. High order piecewice-polynomial functions are reference functions in SEM. There is no need to rebuild or refine mesh to check solution mesh convergence, as mesh is kept in initial state and only  element orders are changed. The subject of investigation was the  filled elastomer effective properties dependence upon the filler  particles special orientation and the filling degree. Graphs of these dependencies are given in the article. The obtained results show that the spectral element method is suitable for numerical solution of the effective properties estimation problem for composite materials. In  addition, the results allow to estimate the influence of non-linear  effects upon the mechanical properties of the composite. The correction for stress from taking the non-linearity into account is  about 25% under the strain 15% in the case of uniaxial tension.

About the Authors

D. A. Konovalov
Fidesys LLC
Russian Federation

Head of software development department



M. Ya. Yakovlev
Fidesys LLC
Russian Federation

candidate of physical and mathematical sciences, Composite Analysis Lead



References

1. Gamlitskiy U.A., Levin V.A., Filippenko E.V. Yakovlev M.Y., On the problem of an elastomeric nanocomposite unit cell stress field calculation // Rubber №4, 2010. – p. 22–25.

2. Levin V.A., Models and methods. Defect inception and growth. - Moscow: FIZMATLIT, 2015. - 456 p. (Nonlinear computational mechanics of strength / Under the general editorship of VA Levin: In 5 volumes, vol. I).

3. Levin V.A., Zingerman K.M., Exact and approximate analytical solutions for finite deformations and their imposition. - Moscow: FIZMATLIT, - 400 p. (Nonlinear computational mechanics of strength / Under the general editorship of Levin V.A.: In 5 volumes, vol. III).

4. Lurie A.I., Nonlinear theory of elasticity. - M., Science, 1980. - 512 p.

5. Yakovlev M.Y., On the numerical estimation of effective mechanical characteristics of rubber-cord composites // Bulletin of Tver State University. Series: Applied Mathematics. № 17, 2012. - P. 29-40.

6. Yakovlev M.Y., Yangirova A.V., Method and results of a numerical evaluation of the effective mechanical properties of rubber-cord composites for the case of a two- layer material. [Electronic resource]. // Deng Engineering Digest, No. 2, 2013. - Access mode: http://ivdon.ru/magazine/archive/n2y2013/1639

7. Bronstein J.N., Semendjajew K.A., Musiol G., Muchkig H. Taschenbuch der Mathematik, 4. Auglage. Harri Deutch, Frankfurt a. M., 1999.

8. Hesthaven J.S., Teng C.H. Stable Spectral Methods on Tetrahedral Elements, SIAM Journal of Scientific Computing, Vol. 21, No. 6, 1998, pp. 2352-2380.

9. Komatitsch D., Violette J.-P., The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of Seismological Society of America, 88(2), 1998

10. Levin V.A., Lokhin V.V., Zingerman K.M. Effective elastic properties of porous materials with randomly dispersed pores. Finite deformation // Trans. ASME. Journal of Applied Mechanics. 2000. V. 67, No. 4. – P. 667-670.

11. Levin V.A., Vdovichenko I.I., Vershinin A.V., Yakovlev M.Ya., Zingerman K.M. Numerical estimation of effective mechanical properties for reinforced Plexiglas in the two-dimensional case [Электронный ресурс] // Model. Simulat. Eng., 2016. – Режим доступа: http://www.hindawi.com/journals/mse/aip/9010576/

12. Levin V.A., Zingermann K.M. Effective Constitutive Equations for Porous Elastic Materials at Finite Strains and Superimposed Finite Strains// Trans. ASME. Journal of Applied Mechanics. 2003. Vol. 70, No. 6. – P. 809–816.

13. Levin V.A., Zingerman K.M., Vershinin A.V., Yakovlev M.Ya. Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains // Compos. Struct., V. 131, 2015. – P. 25–36.

14. Vdovichenko I.I., Yakovlev M.Ya., Vershinin A.V., Levin V.A. Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems [Электронный ресурс] // IOP Conference Series: Materials Science and Engineering, V. 158, I. 1, article 012094. – Режим доступа: http://iopscience.iop.org/article/10.1088/1757-899X/158/1/012094/pdf

15. Vershinin A.V., Levin V.A., Zingerman K.M., Sboychakov A.M., Yakovlev M.Ya. Software for estimation of second order effective material properties of porous samples with geometrical and physical nonlinearity accounted for // Adv. Eng. Softw., V. 86, 2015. – P. 80–84.

16. Zhang L. Cui T., Liu H. A set of symmetric quadrature rules on triangle and tetrahedral, Journal of Computational Mathematics, Vol. 27, No 1, 2009, pp. 89-96.

17. Zienkiewicz, O.C.; Taylor, R.L. The finite element method. Vol. 1. The basis. Butterworth-Heinemann: Oxford, United Kingdom, 2000, 707 pp.

18. Zienkiewicz, O.C.; Taylor, R.L. The finite element method. Vol. 2. Solid mechanics. Butterworth-Heinemann: Oxford, United Kingdom, 2000, 479 pp.

19. Fidesys LLC official web-site [Electronic resource] - Access mode: http://caefidesys.com/en


Review

For citations:


Konovalov D.A., Yakovlev M.Ya. NUMERICAL ESTIMATION OF EFFECTIVE ELASTIC PROPERTIES OF ELASTOMER COMPOSITES UNDER FINITE STRAINS USING SPECTRAL ELEMENT METHOD WITH CAE FIDESYS. Chebyshevskii Sbornik. 2017;18(3):316-329. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-3-316-329

Views: 585


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)