Preview

Chebyshevskii Sbornik

Advanced search

MODELING OF THERMAL CONVECTION IN POROUS MEDIA WITH VOLUMETRIC HEAT SOURCE USING THE GERA CODE

https://doi.org/10.22405/2226-8383-2017-18-3-234-253

Abstract

This article is devoted to the problem of thermal convection in porous media with volumetric heat generation modelling, arising in  practice of radioactive waste (RW) disposal safety assessment. In  the first section a brief overview of widespread hydrogeological  codes (FEFLOW, SUTRA, SEAWAT, TOUGH2) featuring the ability to  solve thermal problems is done. We point out the lack of heat  generation caused by radioactive decay model in these programs.  The GeRa numerical code developed by the authors is presented. In  the second section we consider the mathematical model of coupled groundwater flow, solute and heat transport, which is  implemented in GeRa. The model describes these processes in  saturated porous media and takes into account radioactive decay,  sorption on the rock, the dependences of density and viscosity on  temperature. The heat transport equation is written assuming thermal equilibrium between the fluid and the rock. The model  includes heat transport by convection and conduction-thermal dispersion. The heat source terms can be wells and volumetric heat generation due to radioactive decay. The numerical scheme  implemented in GeRa to solve the aforementioned coupled problem  is introduced in the third section. The space discretization is done  using finite volume methods (FVM). Sequential iterative coupling implicit scheme is used for temporal discretization. On each iteration  of the scheme the flow, heat transport and solute transport problems are solved sequentially. The fourth section is devoted to the test  problem of heat generating fluid convection in a closed two- dimensional cavern filled by porous material with isothermal walls.  The results obtained using GeRa code are compared to the  asymptotical solution deduced by Haajizadeh. In the fifth section we  present the results of modelling with GeRa the experiments of  Buretta and Berman in which they investigated the regimes of free thermal convection of fluid with volumetric heat generation in porous media. The dependences of Nusselt number on the Raley number  measured in the experiments and calculated numerically are  compared. In the sixth section we consider the test problem of  continuous injection of high-level RW into an aquifer. Here the ability to model coupled flow, heat and solute transport processes is shown. The numerical solution obtained using GeRa is compared to a known analytical one.

About the Authors

F. V. Grigoriev
Nuclear safety institute of the RAS
Russian Federation

Research engineer



I. V. Kapyrin
Institute of Numerical Mathematics of the RAS
Russian Federation

candidate of physical and mathematical sciences, chief of the  geomigration laboratory of the Nuclear safety institute of the RAS, Senior Scientific Researcher of the 



Y. V. Vassilevski
Institute of Numerical Mathematics of the RAS
Russian Federation

doctor of physical and mathematical sciences, associate  professor, corresponding member of the Russian Academy of Sciences, Deputy Director



References

1. Diersh, H.-J. G., 2014, FEFLOW – Finite element modeling of flow, mass and heat transport in porous and fractured media, Springer, Berlin Heidelberg, XXXV, 996 pp.

2. Voss, C.I., 1984, A finite-element simulation model for saturatedunsaturated, fluid-density-dependent ground-water flow with energy transport or chemically- reactive single-species solute transport: U.S. Geological Survey Water-Resources Investigations Report 84-4369, 409 pp.

3. Voss, C.I., Provost, A.M. 2002, SUTRA, A Model for Saturated-Unsaturated Variable-Density Ground-Water Flow with Solute or Energy Transport: Geological Survey Water-Resources Investigations Report 02-4231, 250 pp.

4. Weatherhill, D., Simmons, C.T., Voss, C.E., Robinson N.I. 2004, “Testing density- dependent ground-water models: twodimensional steady state unstable convection in

5. infinite, finite and inclined porous layers”, Advances in Water Resources, vol. 27, pp. 547-562.

6. Ranganathan, V., Hanor, J.S. 1988, “Basin density-driven groundwater flow near salt domes” Chem. Geol., No 74, pp. 173–188.

7. Langevin, C.D., Thorne D.T., Jr., Dausman A.M., Sukop M.C., Guo, Weixing, 2007, SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport: U.S. Geological Survey Techniques and Methods Book 6, Chapter A22, 39 pp.

8. Pruess, K., Oldenburg, C., Moridis, G., 1999, TOUGH2 User’s Guide, ver. 2.0, Lawrence Berkeley National Laboratory.

9. Kapyrin, I. V., Ivanov, V. A., Kopytov, G. V., Utkin, S. S. 2015, “Integral code GeRa for RAW disposal safety validation” , Gornyi zhurnal, no. 10, pp. 44-50.

10. Vassilevski, Y. V., Konshin I. N., Kopytov, G. V., Terekhov K. M. 2013, INMOST – programmnaja platforma i graficheskaja sreda dlja razrabotki parallel’nyh chislennyh modelej na setkah obshhego vida [INMOST – a Software Platform and Graphical Environment for Development of Parallel Numerical Models on General Meshes], Izdatelstvo Moskovskogo Universiteta Moscow. (Russian)

11. INMOST project page, Available at: www.inmost.org.

12. Diersh, H.-J. G., Kolditz, O. 1998, “Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems”, Advances in Water Resources, vol. 21, pp. 401-425.

13. Kimel, L. R., Mashkovich, V.P. 1972, Zaschita ot ioniziruyuschih izlucheniy [Protection against ionizing radiation], 2-nd ed., Atomizdat, Moscow. (Russian)

14. Nikitin, K., Vassilevski, Yu. 2010, “A monotone nonlinear finite volume method for advection–diffusion equations on unstructured polyhedral meshes in 3D”, Russian J. Numer. Anal. Math. Modelling, vol. 25, no. 4, pp. 335-358.

15. Haajizadeh, M., Ozguc, A. F., Tien, C. L. 1985, “Natural convection in a vertical porous enclosure with internal heat generation”, Int. J. Heat Mass Transfer, vol. 27, no. 10, pp. 1893–1902.

16. Buretta, R. J., Berman, A. S. 1976, “Convective heat transfer in a liquid saturated porous layer” ASME J. Appl. Mech., vol. 43, pp. 249–253.

17. Hardee, H. C., Nilson, R. H. 1977, “Natural convection in porous media with heat generation” Nucl. Sci. Engng., vol. 63, pp. 119–132.

18. Rhee, S. J., Dhir, V. K., Catton, I. 1978, “Natural convection heat transfer in beds of inductively heated particles” ASME J. Heat Transfer., vol. 100, pp. 78–85.

19. Kulacki, F. A., Freeman, R. G. 1979, “A note on thermal convection in a saturated, heat generating porous layer” ASME J. Heat Transfer, vol. 101, pp. 169–171.

20. Nield, D.A., Bejan, A., Convection in Porous Media (5th edition), Springer, 2017.

21. Okounkov, G. A., Rybalchenko, A. I., Kuvaev A. A. 2003, “Thermal behaviour of geologic environment used for nuclear waste disposal”, Geojekologija. Inzhenernaja geologija. Gidrogeologija. Geokriologija, no. 3, pp. 237-244.

22. Kirjuhin, A. V., Kuvaev, A. A. “Modeling of the test case of high-level radioactive waste injection in aquifer with radiogenic heat”, Materialy mezhdunarodnoj nauchnoj konferencii «Gidrogeologija segodnja i zavtra», MGU [“Groundwater geology today and tomorrow” international scientific conference proceedings, MSU]. Moscow, 2013, pp. 204–209.

23. Rybalchenko, A. I., Pimenov, М. К., Kostin, P.P. et al., 1994, Glubinnoe zahoronenie zhidkih radioaktivnyh othodov [Deep geological liquid radioactive waste disposal], IzdAt, Moscow.

24. Mal’kovskii, V. I., Pek, А. А., Kochkin, B.Т., Ozerskii, А.Yu. 2013, “Assessment of potential pollution of the geological environment upon underground disposal of radioactive waste at the “Eniseiskii” site in the Nizhnekanskii mountain range (Krasnoyarsk region)”, Geojekologija. Inzhenernaja geologija. Gidrogeologija. Geokriologija, no. 6, pp. 483-490.

25. Levin, V. A., 2015, Modeli i metody. Obrazovanie i razvitie defektov. Nelinejnaja vychislitel’naja mehanika prochnosti. T.1. [Models and methods. Defect formation and growth. Nonlinear computational mechanics of strength. Vol. 1.], FIZMATLIT, Moscow. (Russian)


Review

For citations:


Grigoriev F.V., Kapyrin I.V., Vassilevski Y.V. MODELING OF THERMAL CONVECTION IN POROUS MEDIA WITH VOLUMETRIC HEAT SOURCE USING THE GERA CODE. Chebyshevskii Sbornik. 2017;18(3):234-253. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-3-234-253

Views: 517


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)