THE ESTIMATION OF THE NUMBER OF P2–TILINGS OF A PLANE BY A GIVEN AREA POLYOMINO
https://doi.org/10.22405/2226-8383-2016-17-3-204-214
Abstract
About the Authors
A. V. ShutovRussian Federation
Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor of the Department of Management and Informatics in Technical and Economic Systems
E. V. Kolomeykina
Russian Federation
References
1. Ammann R. & Grunbaum B. & Shephard G. 1991, "Aperiodic tiles", Discrete and Computational Geometry, Vol. 6, no. 1, pp. 1–25. doi: 10.1007/BF02293033.
2. Barequet G., Rote G. & Shalah M. 2015, "
3. Bousquet-Melou M. & Brak R. 2009, "Exactly Solved Models", Polygons, Polyominoes and Polycubes, Springer, pp. 43–78. doi:10.1007/978-1-4020-9927-4.
4. Brlek S., Frosini A., Rinaldi S. & Vuillon L. 2006, "Tilings by translation: enumeration by a rational language approach", The electronic journal of combinatorics, Vol. 13, R15.
5. Brlek S., Provencal X. & Fedou J.-M. 2009, "On the tiling by translation problem", Discrete Applied Mathematics, Vol. 157, no. 3, pp. 464–475. doi:10.1016/j.dam.2008.05.026.
6. Fukuda H., Mutoh N., Nakamura G. & Schattschneider D. 2007, "A method to generate polyominoes and polyiamonds for tilings with rotational symmetry", Graphs and Combinatorics, Vol. 23, Supplement 1, pp. 259–267. doi: 10.1007/s00373-007-0719-y.
7. Fukuda H., Mutoh N., Nakamura G. & Schattschneider D. 2008, "Enumeration of polyominoes, polyiamonds and polyhexes for isohedral tilings with rotational symmetry", Computational Geometry and Graph Theory - International Conference, KyotoCGGT 2007, Kyoto, Japan, June 11-15, 2007. Revised Selected Papers, Springer, pp. 68–78. doi:10.1007/978-3-540-89550-3_7.
8. Gambini I. & Vuillon L. 2007, "An algorothm for deciding if a polyomino tiles the plane by translations", RAIRO Theoretical Informatics and Applications, Vol. 41, no. 2, pp. 147–155.
9. Golomb S. W. 1954, "Checker boards and polyominoes", American Mathematical Monthly, Vol. 61, pp. 672–682. doi: 10.2307/2307321.
10. Jensen I. 2003, "Counting polyominoes: a parallel implementation for cluster computing", Computational Science – ICCS 2003 Proceedings, Part III, Springer, pp. 203–212.
11. Klarner D. 1967, "A cell growth problems", Cand. J. Math., Vol. 19, pp. 851–863. doi: 10.4153/CJM-1967-080-4.
12. Klarner D. A. & Rivest R.L. 1973, "A procedure for improving the upper bound for the number of n-ominoes", Canad. J. Math., Vol. 25, pp. 585–602. doi:/10.4153/CJM-1973-060-4.
13. Madras N. & Slade G. 1996, The self-avoiding walk, Springer, 427 pp. doi:10.1007/978-1-4614-6025-1.
14. Myers J. 2016, "Polyomino, polyhex and polyiamond tiling", Available at: https://www.polyomino.org.uk/mathematics/polyform-tiling/
15. Rhoads G. C. 2003, Planar Tilings and the Search for an Aperiodic Prototile, PhD dissertation, Rutgers University.
16. Rhoads G. C. 2005, "Planar tilings by polyominoes, polyhexes, and polyiamonds", Journal of Computational and Applied Mathematics, Vol. 174, no. 2, pp. 329–353. doi:10.1016/j.jcam.2004.05.002.
17. Schattschneider D. 1980, "Will it tile? Try the Conway criterion!", Mathematics Magazine, Vol. 53, no. 4, pp. 224–233.
18. Gardner M. 1999, Mathematical puzzles and diversions, 2nd edition, Dover, 447 pp.
19. Гарднер М. 1966, New mathematical diversions from Scientific American, Simon and Shuster, 496 pp.
20. Gardner M. 1974, Mathematical games from Scientific American, Simon and Shuster, 456 pp.
21. Gardner M. 1988, Time travel and other mathematics bewilderments, Freeman and Co., New York, 341 pp.
22. Golomb S. W. 1994, Polyominoes, 2nd edition, Princeton University Press, New Jercey. 196 pp.
23. Maleev A. V. 2013, "Algorithm and computer-program search for variants of polyomino packings in plane", Kristallografija, Vol. 58, no. 5, pp. 749–756. (Russian). translation in Crystallography Reports, 2015, Vol. 60, no. 6, pp. 986–992. doi:10.7868/S0023476113040140.
24. Maleev A. V. & Shutov A. V. 2013, "On the number of translational plane tilings by polyomino", Trudy IX Vserossiiskoi nauchnoi shkoly "Matematicheskie issledovaniya v estestvennyh naukah" (Proc. IX All-Russian scientfic school "Mathematical Research in Natural sciences"), Apatity, pp. 101–106.
25. Nesterenko Ju. V., Galochkin A. I. & Shidlovskij A. B. 1984, Vvedenie v teoriju chisel [Introduction in number theory]. Izdatel’stvo Moskovskogo Universiteta, Moskow, 152 pp.
26. Shutov A. V. & Kolomeykina E. V. 2014, "On the number of lattice tilings of a plane by a given area polyomino", Trudy IX Vserossiiskoi nauchnoi shkoly "Matematicheskie issledovaniya v estestvennyh naukah"(Proc. IX All-Russian scientfic school "Mathematical Research in Natural sciences"), Apatity, pp. 147–152.
27. Shutov A. V. & Kolomeykina E. V. 2013, "The estimation of the number of lattice tilings of a plane by a given area polyomino ", Modelirovanie i Analiz Informacionnyh Sistem (Modeling and Analysis of Information Systems), Vol. 20, no. 5, pp. 148–157.
28. Shutov A. V. & Kolomeykina E. V. 2015, "The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino", Modelirovanie i Analiz Informacionnyh Sistem (Modeling and Analysis of Information Systems), Vol. 22, no. 2, pp. 295–303.
Review
For citations:
Shutov A.V., Kolomeykina E.V. THE ESTIMATION OF THE NUMBER OF P2–TILINGS OF A PLANE BY A GIVEN AREA POLYOMINO. Chebyshevskii Sbornik. 2016;17(3):204-214. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-3-204-214