ON NUMBER OF ZEROS OF THE RIEMANN ZETA FUNCTION THAT LIE IN «ALMOST ALL» VERY SHORT INTERVALS OF NEIGHBORHOOD OF THE CRITICAL LINE
https://doi.org/10.22405/2226-8383-2016-17-3-106-124
Abstract
Proof (or disproof) of the Riemann hypothesis is the central problem of analytic number theory. By now it has not been solved.
In 1985 Karatsuba proved that for any \( 0 <\varepsilon <0,001 \), \( 0,5 <\sigma \leq 1 \), \( T> T_0 (\varepsilon)> 0 \) and \( H = T ^ { 27/82 + \varepsilon} \) in the rectangle with vertices \( \sigma + iT \), \( \sigma + i (T + H) \), \( 1 + i (T + H) \), \( 1 + iT \) contains no more than \( cH / (\sigma-0,5) \) zeros of \( \zeta (s) \). Thereby A.A. Karatsuba significantly strengthened the classical theorem J. Littlewood's.
Decrease in magnitude of \(H\) for individual rectangle has not been obtained. However, by solving this problem <<on average>>, in 1989 L.V. Kiseleva proved that for <<almost all>> \( T \) in the interval \( [X, X + X ^ {11/12 + \varepsilon}] \), \( X> X_0 (\varepsilon) \) in rectangle with vertices \( \sigma + iT \), \( \sigma + i (T + X ^ \varepsilon) \), \( 1 + i (T + X ^ \varepsilon) \), \( 1 + iT \) contains no more than \( O (X ^ \varepsilon / (\sigma-0,5)) \) zeros of \( \zeta (s) \).
In this article, we obtain a result of this kind, but for <<almost all >> \( T \) in the interval \( [X, X + X ^ {7/8 + \varepsilon}] \).
References
1. Riemann, B. 1948, “Sochineniya.” (Russian) [The works], OGIZ, Moskva–Leningrad. 479 p.
2. Hardy, G. Н. 1914, “Sur les zeros de la fonction
3. Hardy, G. H. & Littlewood, J. E. 1921. “The zeros of Riemann’s zeta-function on the critical line”, Mathematische Zeitschrift, vol. 10, pp. 283–317.
4. Littlewood, J. E. 1924, “On the zeros of the Riemann zeta-function,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 22. pp 295-318 doi:10.1017/S0305004100014225
5. Selberg, A. 1942, “On the zeros of Riemann’s zeta-function”, Skr. Norske. Vid. Akad Oslo, vol. 10, pp. 1–59.
6. Levinson, N. 1974, “More than one third of the zeros of Riemann’s zeta-function are on
7. Karatsuba, A. A. 1981, “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, vol. 157, pp. 49–63. (Russian)
8. Karatsuba, A. A. 1984, “On the zeros of the function
9. Karatsuba, A. A. 1984, “The distribution of zeros of the function
10. Karatsuba, A. A. 1985, “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, vol. 167 , pp. 167–178. (Russian)
11. Karatsuba, A. A. 1985, “On the real zeros of the function
12. Karatsuba, A. A. 1985, “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, vol. 40, no 5, pp. 23–82. (Russian)
13. Karatsuba, A. A. 1986, “On the zeros of the function
14. Karatsuba, A. A. 1992, “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., vol 56, no 2, pp. 372–397. (Russian)
15. Karatsuba, A. A. 1992, “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, vol. 47, no 2, pp. 193–194. (Russian)
16. Karatsuba, A. A. 1992 “On the zeros of a special type of function connected with Dirichlet series”, Math. USSR-Izv., vol. 38, no 3, pp. 471–502.
17. Kiseleva, L. V. 1988, “The number of zeros of the function
18. Kiseleva, L.V. 1989 “On the zeros of the function
19. Tam, D. D. 2015 “On the zeros of the Rieman zeta function, lying in almost all short intervals of the critical line.” Chebyishovski Sbornhik. vol. 17, no 1, pp. 71–89.
20. Voronin, S. V. & Karatsuba, A. A. 1994, “Zeta-funkcia Rimana.” (Russian) [The Riemann zeta-function], Fizmatlit, Moscow, 376 p.
21. Titchmarsh, E. K. 1953, “Teoriya dzeta-funkcii Rimana.” (Russian)[Теория дзета-функции Римана], Mir, Moscow, 409 p.
22. Malysev, A. V. 1962, “On the representation of integers by positive quadratic forms.” (Russian) Trudy Mat. Inst. Steklov, vol. 65, pp. 3-212.
23. Karatsuba, A. A. 1983, “Osnovui analiticheskoi teorii chisel.” (Russian) [Fundamentals of analytic number theory], Nauka, Мoscow, 240 p.
Review
For citations:
Tam D. ON NUMBER OF ZEROS OF THE RIEMANN ZETA FUNCTION THAT LIE IN «ALMOST ALL» VERY SHORT INTERVALS OF NEIGHBORHOOD OF THE CRITICAL LINE. Chebyshevskii Sbornik. 2016;17(3):106-124. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-3-106-124