Harry Dym equation with a special self-consistent source
https://doi.org/10.22405/2226-8383-2025-26-5-246-258
Abstract
The work is concerned with studying the integration of the Harry Dym equation with the
self-consistent source. The source consists of the combination of the eigenfunctions and linear independent solution with the same eigenfunctions of the corresponding spectral problem for the string equation which has not spectral singularities. While considering the source, the points of the discrete spectrum of the string equation have been as the functions of time. Deduced the time performance of the scattering data of the string equation which allows to integrate the Cauchy problem for the Harry Dym equation with the special self-consistent source in the class of the rapidly decreasing functions via the inverse scattering method.
About the Authors
Gayrat Urazalievich UrazboevUzbekistan
doctor of physical and mathematical sciences
Aygul Kamildjanovna Babadjanova
Uzbekistan
candidate of physical and mathematical sciences
Shoira Erkinovna Atanazarova
Uzbekistan
References
1. Vasconcelos, G.L. & Kadanoff, L.P. 1991, “Stationary solutions for the Saffman-Taylor
2. problem with surface tension”, Physical Review A, vol. 44, no. 11, pp. 6490–6495, doi:
3. 1103/PhysRevA.44.6490.
4. Ibragimov, N.K. & Shabat, A.B. 1981, “Infinite Lie-Beklund algebras”, Functional Analysis and
5. Its Applications, vol. 14, no. 4, pp. 313–315, doi: 10.1007/BF01078315.
6. Guo, B.-Y. & Roges, C. 1989, “On Harry Dym equation and its solution”, Science, vol. 32, no.
7. , pp. 283–295.
8. Fuchssteiner, B., Schulze, T. & Carllot, S. 1992, “Explicit solutions for Harry Dym equation”,
9. Journal of Physics A: Mathematical and General, vol. 25, no. 1, pp. 223–230, doi: 10.1088/0305-
10. /25/1/025.
11. Kruskal, M.D. 1975, “Lecture notes in physics”, in Lecture Notes in Physics, vol. 38, Springer,
12. Berlin.
13. Sabatier, P.C. 1979, “On some spectral problems and isospectral evolutions connected with the
14. classical string problem. II: Evolution equation”, Letters al Nuovo Cimento, vol. 26, no. 15, pp.
15. –486, http://dx.doi.org/
16. 1155/2013/109170.
17. Wadati, M., Konno, H. & Ichikawa, Y.H. 1979, “New integrable nonlinear evolution equation”,
18. Journal of the Physical Society of Japan, vol. 47, no. 5, pp. 1698–1700, doi: 10.1143/
19. JPSJ.47.1698.
20. Wadati, M., Ichikawa, Y.H. & Shimizu, T. 1980, “Cusp Soliton of a New Integrable Nonlinear
21. Evolution Equation”, Progress of Theoretical Physics, vol. 64, no. 6, pp. 1959–1967, doi: 10.1143/
22. PTP.64.1959.
23. Hereman, W., Banerjee, P.P. & Chatterjee, M.R. 1989, “Derivation and implicit solution of
24. the Harry Dym equation and its connection with the Korteweg-de Vries equation”, Journal
25. of Physics A: Mathematical and General, vol. 22, no. 3, pp. 241–255, doi: 10.1088/0305-
26. /22/3/009.
27. Kawamoto, S. 1985, “An exact transformation from the Harry Dym equation to the modified
28. KdV equation”, Journal of the Physical Society of Japan, vol. 54, no. 5, pp. 2055–2056, doi:
29. 1143/JPSJ.54.2055.
30. Dmitrieva, L. & Pyatkin, D. 2002, “Elliptic finite-gap densities of the polar operator”, Physics
31. Letters A, vol. 299, no. 1, pp. 37–44, doi: 10.1016/S0375-9601(02)00858-7.
32. Cai, L. & Cheng, J. 2021, “Reciprocal transformations of Harry–Dym hierarchy”, Applied
33. Mathematics Letters, vol. 112, art. id. 106702, http://dx.doi.org/10.1063/1.1606527.
34. Mel’nikov, V.K. 1990, “Creation and annihilation of solitons in the system described by the
35. Korteweg-de Vries equation with a self-consistent source”, Inverse Problems, vol. 6, no. 5, pp.
36. –823, doi: 10.1088/0266-5611/6/5/010.
37. Urazboev, G.U. 2008, “Toda lattice with a special self-consistent source”, Theoretical and
38. Mathematical Physics, vol. 154, no. 2, pp. 260–269, doi: 10.1007/S11232-008-0025-8.
39. Babajanov, B., Feˇckan, M. & Urazboev, G. 2017, “On the periodic Toda lattice hierarchy with
40. an integral source”, Communications in Nonlinear Science and Numerical Simulation, vol. 52,
41. pp. 110–123, doi: 10.1016/
42. j.cnsns.2017.04.023.
43. Urazboev, G.U., Babadjanova, A.K. & Saparbaeva, D.R. 2021, “Integration of the Harry
44. Dym equation with an integral type source”, Vestnik Udmurtskogo Universiteta. Matematika.
45. Mekhanika. Komp’yuternye Nauki, vol. 31, no. 2, pp. 285–295, doi: 10.35634/vm210209.
46. Urazboev, G.U., Babadjanova, A.K. & Zhuaspayev, T.A. 2022, “Integration of the periodic
47. Harry Dym equation with a source”, Wave Motion, vol. 113, art. id. 102970, doi: 10.1016/
48. j.wavemoti.2022.102970.
49. Wu, H., Liu, J. & Zeng, Y. 2016, “New extension of dispersionless Harry Dym hierarchy”,
50. Journal of Nonlinear Mathematical Physics, vol. 23, no. 3, pp. 383–398, doi: 10.1080/
51. 2016.1199499.
52. Ma, W.-X. 2010, “An extended Harry Dym hierarchy”, Journal of Physics A: Mathematical and
53. Theoretical, vol. 43, no. 16, art. id. 165202, doi: 10.1088/1751-8113/43/16/165202.
54. Aktosun, T. & van der Mee, C. 2006, “Explicit solutions to the Korteweg–de Vries equation on
55. the half line”, Inverse Problems, vol. 22, no. 6, pp. 2165–2174, doi: 10.1088/0266-5611/22/6/017.
Review
For citations:
Urazboev G.U., Babadjanova A.K., Atanazarova Sh.E. Harry Dym equation with a special self-consistent source. Chebyshevskii Sbornik. 2025;26(5):246-258. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-5-246-258
JATS XML






















