Preview

Chebyshevskii Sbornik

Advanced search

Harry Dym equation with a special self-consistent source

https://doi.org/10.22405/2226-8383-2025-26-5-246-258

Abstract

The work is concerned with studying the integration of the Harry Dym equation with the
self-consistent source. The source consists of the combination of the eigenfunctions and linear independent solution with the same eigenfunctions of the corresponding spectral problem for the string equation which has not spectral singularities. While considering the source, the points of the discrete spectrum of the string equation have been as the functions of time. Deduced the time performance of the scattering data of the string equation which allows to integrate the Cauchy problem for the Harry Dym equation with the special self-consistent source in the class of the rapidly decreasing functions via the inverse scattering method.

About the Authors

Gayrat Urazalievich Urazboev
Urgench State University named after Abu Rayhan Biruni; V. I. Romanovskiy Institute of Mathematics; Uzbekistan Academy of Sciences
Uzbekistan

doctor of physical and mathematical sciences



Aygul Kamildjanovna Babadjanova
V. I. Romanovskiy Institute of Mathematics; Uzbekistan Academy of Sciences; Urgench State University named after Abu Rayhan Biruni
Uzbekistan

candidate of physical and mathematical sciences



Shoira Erkinovna Atanazarova
V. I. Romanovskiy Institute of Mathematics; Uzbekistan Academy of Sciences; Urgench State University named after Abu Rayhan Biruni
Uzbekistan


References

1. Vasconcelos, G.L. & Kadanoff, L.P. 1991, “Stationary solutions for the Saffman-Taylor

2. problem with surface tension”, Physical Review A, vol. 44, no. 11, pp. 6490–6495, doi:

3. 1103/PhysRevA.44.6490.

4. Ibragimov, N.K. & Shabat, A.B. 1981, “Infinite Lie-Beklund algebras”, Functional Analysis and

5. Its Applications, vol. 14, no. 4, pp. 313–315, doi: 10.1007/BF01078315.

6. Guo, B.-Y. & Roges, C. 1989, “On Harry Dym equation and its solution”, Science, vol. 32, no.

7. , pp. 283–295.

8. Fuchssteiner, B., Schulze, T. & Carllot, S. 1992, “Explicit solutions for Harry Dym equation”,

9. Journal of Physics A: Mathematical and General, vol. 25, no. 1, pp. 223–230, doi: 10.1088/0305-

10. /25/1/025.

11. Kruskal, M.D. 1975, “Lecture notes in physics”, in Lecture Notes in Physics, vol. 38, Springer,

12. Berlin.

13. Sabatier, P.C. 1979, “On some spectral problems and isospectral evolutions connected with the

14. classical string problem. II: Evolution equation”, Letters al Nuovo Cimento, vol. 26, no. 15, pp.

15. –486, http://dx.doi.org/

16. 1155/2013/109170.

17. Wadati, M., Konno, H. & Ichikawa, Y.H. 1979, “New integrable nonlinear evolution equation”,

18. Journal of the Physical Society of Japan, vol. 47, no. 5, pp. 1698–1700, doi: 10.1143/

19. JPSJ.47.1698.

20. Wadati, M., Ichikawa, Y.H. & Shimizu, T. 1980, “Cusp Soliton of a New Integrable Nonlinear

21. Evolution Equation”, Progress of Theoretical Physics, vol. 64, no. 6, pp. 1959–1967, doi: 10.1143/

22. PTP.64.1959.

23. Hereman, W., Banerjee, P.P. & Chatterjee, M.R. 1989, “Derivation and implicit solution of

24. the Harry Dym equation and its connection with the Korteweg-de Vries equation”, Journal

25. of Physics A: Mathematical and General, vol. 22, no. 3, pp. 241–255, doi: 10.1088/0305-

26. /22/3/009.

27. Kawamoto, S. 1985, “An exact transformation from the Harry Dym equation to the modified

28. KdV equation”, Journal of the Physical Society of Japan, vol. 54, no. 5, pp. 2055–2056, doi:

29. 1143/JPSJ.54.2055.

30. Dmitrieva, L. & Pyatkin, D. 2002, “Elliptic finite-gap densities of the polar operator”, Physics

31. Letters A, vol. 299, no. 1, pp. 37–44, doi: 10.1016/S0375-9601(02)00858-7.

32. Cai, L. & Cheng, J. 2021, “Reciprocal transformations of Harry–Dym hierarchy”, Applied

33. Mathematics Letters, vol. 112, art. id. 106702, http://dx.doi.org/10.1063/1.1606527.

34. Mel’nikov, V.K. 1990, “Creation and annihilation of solitons in the system described by the

35. Korteweg-de Vries equation with a self-consistent source”, Inverse Problems, vol. 6, no. 5, pp.

36. –823, doi: 10.1088/0266-5611/6/5/010.

37. Urazboev, G.U. 2008, “Toda lattice with a special self-consistent source”, Theoretical and

38. Mathematical Physics, vol. 154, no. 2, pp. 260–269, doi: 10.1007/S11232-008-0025-8.

39. Babajanov, B., Feˇckan, M. & Urazboev, G. 2017, “On the periodic Toda lattice hierarchy with

40. an integral source”, Communications in Nonlinear Science and Numerical Simulation, vol. 52,

41. pp. 110–123, doi: 10.1016/

42. j.cnsns.2017.04.023.

43. Urazboev, G.U., Babadjanova, A.K. & Saparbaeva, D.R. 2021, “Integration of the Harry

44. Dym equation with an integral type source”, Vestnik Udmurtskogo Universiteta. Matematika.

45. Mekhanika. Komp’yuternye Nauki, vol. 31, no. 2, pp. 285–295, doi: 10.35634/vm210209.

46. Urazboev, G.U., Babadjanova, A.K. & Zhuaspayev, T.A. 2022, “Integration of the periodic

47. Harry Dym equation with a source”, Wave Motion, vol. 113, art. id. 102970, doi: 10.1016/

48. j.wavemoti.2022.102970.

49. Wu, H., Liu, J. & Zeng, Y. 2016, “New extension of dispersionless Harry Dym hierarchy”,

50. Journal of Nonlinear Mathematical Physics, vol. 23, no. 3, pp. 383–398, doi: 10.1080/

51. 2016.1199499.

52. Ma, W.-X. 2010, “An extended Harry Dym hierarchy”, Journal of Physics A: Mathematical and

53. Theoretical, vol. 43, no. 16, art. id. 165202, doi: 10.1088/1751-8113/43/16/165202.

54. Aktosun, T. & van der Mee, C. 2006, “Explicit solutions to the Korteweg–de Vries equation on

55. the half line”, Inverse Problems, vol. 22, no. 6, pp. 2165–2174, doi: 10.1088/0266-5611/22/6/017.


Review

For citations:


Urazboev G.U., Babadjanova A.K., Atanazarova Sh.E. Harry Dym equation with a special self-consistent source. Chebyshevskii Sbornik. 2025;26(5):246-258. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-5-246-258

Views: 49

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)