Preview

Chebyshevskii Sbornik

Advanced search

Density of zeros of the Riemann zeta function in narrow rectangles of the critical strip

https://doi.org/10.22405/2226-8383-2025-26-5-158-183

Abstract

For the number of zeros of the Riemann zeta-function 𝜁(𝑠) in narrow rectangles of the critical
strip (Re 𝑠 ⩾ 𝛼 ⩾ 0.5 and 𝑇 < Im𝑠 ⩽ 𝑇 + 𝐻), assuming

where (𝜅, 𝜆) is an arbitrary exponent pair, 𝜀 < 10^(−4) is any fixed positive number, and
𝑇 ⩾ 𝑇0(𝜀) > 0, an estimate of the form

is obtained. Here 𝑎 = 2, 4 and 𝑐 = 172 when 1/2 ⩽ 𝛼 ⩽ 2/3 or 5/6 ⩽ 𝛼 ⩽ 1, and respectively 𝑎 = 8/3 and 𝑐 = 50 when 2/3 < 𝛼 < 5/6 .

About the Author

Zarullo Khusenovich Rakhmonov
Tajik National University
Tajikistan

doctor of physical and mathematical sciences, Academician of the National Academy of Sciences of Tajikistan



References

1. Huxley, М. N. 1972, “On the differences between consecutive primes”, Inventiones mathematicae, vol. 15, pp. 164 – 170.

2. Karatsuba, A. A. 1990, “The distribution of prime numbers”, Russian Math. Surveys, vol. 45, Is. 5, pp. 99 – 171.

3. Gritsenko, S. A. 1992, “On a density theorem”, Math. Notes,, vol. 51, Is. 6, pp. 553 – 558.

4. Selberg, A. 1942, “On the zeros Riemann zeta function”, Shr. Norske Vid. Akad. Oslo, vol. 10, pp. 1 – 59.

5. Karatsuba, A. A. 1984, “On the zeros of the function 𝜁(𝑠) On short intervals of the critical line”, Mathematics of the USSR-Izvestiya, vol. 24, Is. 3, pp. 523 – 537.

6. Karatsuba, A. A. 1986, “On the zeros of the function 𝜁(𝑠) in the neighborhood of the critical line”, Mathematics of the USSR-Izvestiya, vol. 26, Is. 2, pp. 307 – 313.

7. Karatsuba, A. A. 1985, A. A. Karatsuba, “The Riemann zeta function and its zeros”, Russian Math. Surveys, vol. 40, Is. 5, pp. 23 – 82.

8. Voronin, S. M., & Karatsuba, A. A. 1994, The Riemann zeta function, Fiziko-Matematicheskaya Literatura, Moscow, 376 p. ISBN: 5-02-014120-8.

9. Karatsuba, A. A. 1990, “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Mathematics of the USSR-Izvestiya, vol. 36, Is. 2, pp. 311 – 324.

10. Karatsuba, A. A. 1994, “On the zeros of arithmetic Dirichlet series without Euler product”, Russian Acad. Sci. Izv. Math., vol. 43, Is. 2, pp. 193–203.

11. Karatsuba, A. A. 1995, “A new approach to the problem of the zeros of some Dirichlet series”, Proc. Steklov Inst. Math., vol. 207, pp. 163–177.

12. Rakhmonov, Z. Kh. 2006, “Zeros of the Riemann zeta function in short intervals of the critical line”, Chebyshevskii Sbornik, vol. 7, Is. 1(17), pp. 263-269.

13. Nematova, G. D, & Khasanov, Z. N. 2001, “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 44, no. 3-4, pp. 4 –7.

14. Rakhmonov, Z. Kh., & Aminov, A. S. 2019, “On the zeros of an odd order of the Davenport-Heilbron function in short intervals of the critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 62, no. 3-4, pp. 133 – 138.

15. Rakhmonov, Z. Kh., & Aminov, A. S. 2019, “On the zeros of an odd order of the Davenport-Heilbron function in short intervals of the critical line”, Modern Problems of Mathematics and Mechanics. Proceedings of the International Conference Dedicated to the 80th Anniversary of Academician of the Russian Academy of Sciences V.A. Sadovnichy, Publishing House "MAX Press". ISBN: 978-5-317-06116-6, pp. 522 – 525.

16. Rakhmonov, Z.Kh., & Khayrulloev, Sh. A., & Aminov, A. S. 2019, “Zeros of the Davenport–Heilbronn function in short intervals of the critical line”, Chebyshevskii Sb., vol. 20, Is. 4, pp. 306 – 329.

17. Heath Brown D.R. 1979, “The fourth power moment of the Riemann zeta function”, Proceedings of the London Mathematical Society, vol. s3-38, Is. 3, pp. 385 – 422.

18. Zhan Tao, 1992, “On the mean square of Dirichlet 𝐿-functions”, Acta Mathematica Sinica, vol. 8, Is. 2, pp. 204 – 224.

19. Rakhmonov, Z. Kh. 1994, “Estimate of the density of the zeros of the Riemann zeta function”, Russian Math. Surveys, vol. 49, is. 2, pp. 168 – 169.

20. Bourgain, J., & Watt, N. 2015, “Decoupling for perturbed cones and mean square of 𝜁 (︀12 + 𝑖𝑡)︀”,arXiv:1505.04161v1 [math.NT]. 15 May 2015.

21. Rakhmonov, Z. Kh. & Khayrulloev, Sh. A. 2006, “Distance between the next zeros of Riemann’s zeta-function in the critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 49, no. 5, pp. 393 – 400.

22. Rakhmonov, Z. Kh. & Khayrulloev, Sh. A. 2009, “The neibour zero of the Riemann’s zetafunction laying on a critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 52, no. 5, pp. 331 – 337.

23. Rakhmonov, Z. Kh. & Khayrulloev, Sh. A. 2010, “On the zeros of the Riemann zeta function on the critical line”, The Bulletin of the Tajik National University, Special issue dedicated to the year of education and technical knowledge, pp. 35 – 41.

24. Mardjhanashvili, K. K. 1939, “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, vol. 22, no 7, pp. 391 – 393.

25. Vinogradov, I. M. 1971, The method of trigonometric sums in the theory of numbers, Izdat. “Nauka”, Moscow, 1971. 159 pp.

26. Arkhipov, G. I. & Chubarikov, V. N. & Karatsuba, A. A. 2004. Trigonometric sums in number theory and analysis, Berlin–New-York: Walter de Gruyter, 554 p.

27. Graham, S. W., & Kolesnik, G. 1991, Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series 126, Cambridge University Press, Cambridge, 1991. vi+120 pp.

28. Karatsuba A. A. 1993, Basic analytic number theory, Springer-Verlag, Berlin, xiv+222 pp.


Review

For citations:


Rakhmonov Z.Kh. Density of zeros of the Riemann zeta function in narrow rectangles of the critical strip. Chebyshevskii Sbornik. 2025;26(5):158-183. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-5-158-183

Views: 37

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)