Gelfond’s problem for expansions in linear recurrent bases
https://doi.org/10.22405/2226-8383-2025-26-5-110-136
Abstract
Gelfond obtained a result on the uniform distribution of sums of digits of 𝑏-ary expansions
of natural numbers over residue classes modulo 𝑑 for an arbitrary 𝑑. Later, Lamberger and
Thuswaldner, using deep estimates of trigonometric sums, obtained an analogue of Gelfond’s theorem, in which instead of 𝑏-ary expansions, expansions over linear recurrent bases satisfying the Parry condition and some additional condition on the coefficients, are used. In this paper, we give a new, simpler and self-contained, proof of the Lamberger-Tkuswaldner theorem. Our proof is purely combinatorial and require only Parry condition. In addition, we give a quite simple explicit formula for the exponent in the remainder term. In contrast to the Lamberger-Thuswaldner result, obtained exponent depends only on 𝑑 and the order of the linear recurrent sequence, but not on its coefficients. However, our result does not include the equidistribution of the sums of the digits modulo 𝑑 of natural numbers running from an arbitrary arithmetic progression, which was also proved by Lamberger and Thuswaldner.
At the end of the paper, some unsolved problems are briefly discussed.
About the Authors
Alla Adolfovna ZhukovaRussian Federation
candidate of physical and mathematical sciences
Anton Vladimirovich Shutov
Russian Federation
doctor of physical and mathematical sciences
References
1. Fine, N. J. 1965, “The distribution of the sum of digits (mod 𝑝)”, Bulletin of the American Mathematical Society, vol. 71, no. 4, pp. 651-652.
2. Gelfond, A. O. 1968, “Sur les nombres qui ont des propri´et´es additives et multiplicatives donn´ees (French)”, Acta Aithmetica, vol. 13, no. 3, pp. 259-265. (https://doi.org/10.4064/aa-13-3-259-265).
3. Eminyan, K. M. 1996, “On a Binary Problem”, Mathematical Notes, vol. 60, no. 4, pp. 478-481. (https://doi.org/10.1007/FBF02305438).
4. Parry, W. 1961, “On the 𝛽-expansion of real numbers”, Acta Math. Acad. Sci. Hung., vol. 12, no. 3-4, pp. 401–416. (https://doi.org/10.1007/BF02020954).
5. Peth¨o, A., Tichy, R. F. 1989, “On digit expansions with respect to linear recurrences”, Journal of Number Theory, vol. 3, no. 2, pp. 243-256. (https://doi.org/10.1016/0022-314X(89)90011-5).
6. Grabner, P. J., Tichy, R. F. 1990, “Contributions to digit expansions with respect to linear recurrences”, Journal of Number Theory, vol. 36, no. 2, pp. 160-169. (https://doi.org/10.1016/0022-314X(90)90070-8).
7. Grabner, P. J., Tichy, R. F. 1991, “𝛼-Expansions, linear recurrences, and the sum-of-digits function”, Manuscripta Math., vol. 70, pp. 311-324. (https://doi.org/10.1007/BF02568381).
8. Drmota, M. & Gajdosik, J. 1998, “The distribution of the sum-of-digits function”, Journal de Th´eorie des Nombres de Bordeaux, vol. 10, no. 1, pp. 17-32.
9. Drmota, M., Gajdosik, J. 1998, “The Parity of the Sum-of-Digits-Function of Generalized Zeckendorf Representations”, Fibonacci Quarterly, vol. 36, no. 1, pp. 3-19. (https://doi.org/doi: 10.1007/s002290050221).
10. Zhukova, A. A., Shutov, A. V. 2021, “On Gelfond-type problem for generalized Zeckendorf representations (Russian)”, Chebyshevskii Sbornik, vol. 22, no. 2, pp. 104-120.
11. Drmota, M. & Ska lba, M. 2000, “The Parity of the Zeckendorf Sum-of-Digits-Function”, Manuscripta Mathematica, vol. 101, pp. 361–383. (https://doi.org/10.1007/s002290050221).
12. Lamberger, M., Thuswaldner, J. W. 2003, “Distribution properties of digital expansions arising from linear recurrences”, Mathematica Slovaca, vol. 53, no. 1, pp. 1-20.
13. Coquet, J., Rhin, G., Toffin, Ph. 1981, “Repr´esentations des entiers naturels et ind´ependance statistique 2 (French)”, Annales de l’institut Fourier, vol. 31, no. 1, pp. 1-15. (https://doi.org/10.5802/aif.814).
14. Shutov, A. V. 2024, “On some analogue of the Gelfond problem for Zeckendorf representations (Russian)”, Chebyshevskii Sbornik, vol. 25, no. 5, pp. 195-215. (https://doi.org/10.22405/2226-8383-2024-25-5-195-215).
15. Dumont, J. M., Thomas, A. 1989, “Syst`emes de numeration et fonctions fractales relatifs aux substitutions”, Theoretical Computer Science, vol. 65, no. 2, pp. 153-169. (https://doi.org/10.1016/0304-3975(89)90041-8).
16. Dumont, J. M., Thomas, A. 1993, “Digital sum moments and substitutions”, Acta Arithmetica, vol. 64, no. 3, pp. 205-225. (https://doi.org/10.4064/aa-64-3-205-225).
17. Dumont, J. M., Thomas, A. 1987, “Gaussian asymptotic properties of the sum-of-digits functions”, Journal of Number Theory, vol. 62. no. 1, pp. 19–38. (https://doi.org/10.1006/jnth.1997.2044).
Review
For citations:
Zhukova A.A., Shutov A.V. Gelfond’s problem for expansions in linear recurrent bases. Chebyshevskii Sbornik. 2025;26(5):110-136. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-5-110-136
JATS XML






















