Preview

Chebyshevskii Sbornik

Advanced search

Algoritm for factoring the state vector of a quantum system

https://doi.org/10.22405/2226-8383-2025-26-5-94-110

Abstract

The work is devoted to the consideration of multi-qubit and multi-qudit quantum systems
in pure states, their description in terms of partitioning into non-overlapping sets of entangled qubits (qudits) — sets of entanglement, the formula of logarithmic entanglement of multiqubit and multi-qudit quantum systems in pure and mixed states is presented. Using artificial intelligence methods, the classification of multi-qubit systems is made, taking into account the maximum instantaneous entanglement value and logarithmic entanglement, diagrams of the distribution of these characteristics depending on the factorization of the system state vector into sets of entanglement are constructed. A formula for the ensemble-averaged logarithmic entanglement for multi-qubit and multi-qudit quantum systems in pure states has been constructed.

About the Author

Anastasiya Valer’evna Boeva
Lomonosov Moscow State University
Russian Federation

master’s student



References

1. Gorbachev, V. N., Zhiliba, V. N. 2001, “The physical foundations of modern information processes”, St. Petersburg, 43 p.

2. Holevo, A. S. 2002, “Introduction to the quantum theory of information”, MCCME, Moscow, 128 p.

3. Imre, Sh. & Balazs, F. 2008, "Quantum computing and communication Fizmatlit, Moscow, 319 p.

4. Benenti, G. 2004, “Principles of quantum computation and information”, vol. 1 Basic concepts, World Scientific, Italy, 273 p.

5. Di´osi, L. 2007, “A Short Course in Quantum Information Theory”, Lect. Notes Phys. 713, Springer, Berlin Heidelberg, 161 p.

6. Lvovsky, A. I. 2018, “Quantum Physics An Introduction Based on Photons”, Springer, University of Calgary, Canada, 303 p.

7. Baumester, D., Ekert, A., Tsailinger, A. 2002, “ The Physics of Quantum Information ” Springer Berlin, Heidelberg, 315 p.

8. Valiev, K. A. 2001, “Quantum computers: hopes and reality”, Regular and Chaotic Dynamics, Izhevsk, 352 p.

9. Nielsen, M. & Chang, I. 2006, “Quantum computing and quantum information”, MIR, Moscow, 824 p.

10. Valiev, K. A. 2005, “Quantum computers and quantum computing”, Phisics — Uspekhi, no. 48(1), pp. 3–39.

11. Kalachev, A. A. 2012, “Quantum computer science in problems”, Kazan Federal University, Kazan, 48 p.

12. Holevo, A. S. 2018, “ Matematicheskie osnovi kvantovoi informatiki ”, Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 117 p.

13. Preskill, J. 1998, “Quantum computation and information” California Institute of Technology, Caltech, 321 p.

14. Kaye, P., Laflamme, R. & Mosca, M. 2007, “Introduction to Quantum Computing” Oxford University Press, Oxford, 274 p.

15. Greenberger, D., Horne, M. A. & Zeilinger, A. 1989, “Going beyond Bell’s Theorem in Bell’s Theorem, Quantum Theory, and Conceptions of the universe” , M. Kafatos (Ed.), Knower, Dordrecht, pp. 69-72.

16. Stib, V.-H.& Hardy., J. 2007, “Problems and their solutions in quantum computing and quantum information theory”, SIC "Regular and chaotic dynamics Moscow-Izhevsk, 296 p.

17. N. P. Stadnaya, A. V. Boeva, A. F. Klinskikh, 2023, “Transitivity of entanglement states in multiqubit systems”, Proceedings of Voronezh State University. Series: Physics. Mathematics, no. 2, pp. 16-21.


Review

For citations:


Boeva A.V. Algoritm for factoring the state vector of a quantum system. Chebyshevskii Sbornik. 2025;26(5):94-109. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-5-94-110

Views: 39

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)