Линейная независимость значений 𝐸−функций с периодическими коэффициентами
https://doi.org/10.22405/2226-8383-2025-26-4-461-466
Abstract
We consider sets of integers 𝑎(𝑘,𝑗) 𝑛 , 𝑗 = 1, ..., 𝑚, 𝑘 = 1, ..., 𝑇𝑗 which satisfy conditions
𝑎(𝑘,𝑗)𝑛 = 𝑎(𝑘,𝑗)𝑛+𝑇𝑗, 𝑗 = 1, ..., 𝑚, 𝑘 = 1, ..., 𝑇𝑗 , 𝑛 = 0, 1, ...
and functions
𝐹𝑗,𝑘(𝑧) =∞Σ︁𝑛=0𝑎(𝑘,𝑗)𝑛𝑛!𝑧𝑛, 𝑗 = 1, ..., 𝑚, 𝑘 = 1, ..., 𝑇𝑗 .
We find conditions under which the set of functions
1, 𝑒𝑧, 𝐹𝑗,𝑘(𝑧), 𝑗 = 1, ..., 𝑚, 𝑘 = 2, ..., 𝑇𝑗
is linearly independent over C(𝑧) and for any rational 𝛾 ̸= 0 their values at 𝛾 are linearly
independent numbers.An estimate of the measure of linear independence of these numbers is
obtained. The result can be used to generate pseudo-random numbers.
About the Authors
Alexey Yur’evich NesterenkoRussian Federation
doctor of physical and mathematical sciences
Vladimir Grigor’evich Chirskii
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Chirskii, V. G., Nesterenko, A. Yu. 2017, “An approach to the transformation of periodic sequences”, Discrete Mathematics and ApplicationsW.de Gruyter.-Berlin.-New York,Vol.27, no.1, pp. 1-6.
2. Shidlovskii, A. B. 1989.“Transcendental Numbers”, W.de Gruyter.-Berlin.-New York, 467pp.
3. Salikhov, V. Kh. 1973, “On algebraic independence of the values of E-functions satisfying first order linear differential equations”, Mat. Zametki , Vol. 13,No 1, p.29 - 40.
4. Bertrand, D., Chirskii, V., Yebbou, J. 2004, “ Effective estimates for global relations on Eulertype series”, Ann.Fac.Sci. Toulouse., Vol. 13, No. 2, p.241-260.
5. Alferov, A. P., Zubov, A. Yu., Kuzmin, A. S., Cheremushkin, A. B. 2001, “Fundamentals of Cryptography”, Helios, Moscow, 480p.
Review
For citations:
Nesterenko A.Yu., Chirskii V.G. . Chebyshevskii Sbornik. 2025;26(4):461-466. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-461-466






















