Preview

Chebyshevskii Sbornik

Advanced search

Линейная независимость значений 𝐸−функций с периодическими коэффициентами

https://doi.org/10.22405/2226-8383-2025-26-4-461-466

Abstract

We consider sets of integers 𝑎(𝑘,𝑗) 𝑛 , 𝑗 = 1, ..., 𝑚, 𝑘 = 1, ..., 𝑇𝑗 which satisfy conditions

𝑎(𝑘,𝑗)𝑛 = 𝑎(𝑘,𝑗)𝑛+𝑇𝑗, 𝑗 = 1, ..., 𝑚, 𝑘 = 1, ..., 𝑇𝑗 , 𝑛 = 0, 1, ...

and functions

𝐹𝑗,𝑘(𝑧) =∞Σ︁𝑛=0𝑎(𝑘,𝑗)𝑛𝑛!𝑧𝑛, 𝑗 = 1, ..., 𝑚, 𝑘 = 1, ..., 𝑇𝑗 .

We find conditions under which the set of functions

1, 𝑒𝑧, 𝐹𝑗,𝑘(𝑧), 𝑗 = 1, ..., 𝑚, 𝑘 = 2, ..., 𝑇𝑗

is linearly independent over C(𝑧) and for any rational 𝛾 ̸= 0 their values at 𝛾 are linearly
independent numbers.An estimate of the measure of linear independence of these numbers is
obtained. The result can be used to generate pseudo-random numbers.

About the Authors

Alexey Yur’evich Nesterenko
Moscow Institute of Electronics and Mathematics
Russian Federation

doctor of physical and mathematical sciences



Vladimir Grigor’evich Chirskii
Lomonosov Moscow State University, Ranepa
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Chirskii, V. G., Nesterenko, A. Yu. 2017, “An approach to the transformation of periodic sequences”, Discrete Mathematics and ApplicationsW.de Gruyter.-Berlin.-New York,Vol.27, no.1, pp. 1-6.

2. Shidlovskii, A. B. 1989.“Transcendental Numbers”, W.de Gruyter.-Berlin.-New York, 467pp.

3. Salikhov, V. Kh. 1973, “On algebraic independence of the values of E-functions satisfying first order linear differential equations”, Mat. Zametki , Vol. 13,No 1, p.29 - 40.

4. Bertrand, D., Chirskii, V., Yebbou, J. 2004, “ Effective estimates for global relations on Eulertype series”, Ann.Fac.Sci. Toulouse., Vol. 13, No. 2, p.241-260.

5. Alferov, A. P., Zubov, A. Yu., Kuzmin, A. S., Cheremushkin, A. B. 2001, “Fundamentals of Cryptography”, Helios, Moscow, 480p.


Review

For citations:


Nesterenko A.Yu., Chirskii V.G. . Chebyshevskii Sbornik. 2025;26(4):461-466. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-461-466

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)