Preview

Chebyshevskii Sbornik

Advanced search

An approach to constructing a sequence of pseudorandom numbers based on decompositions of polyadic numbers

https://doi.org/10.22405/2226-8383-2025-26-4-454-460

Abstract

The aim of the work is to construct pseudorandom number generators based on expansions of almost polyadic numbers in powers of a given number. A polyadic number is usually called a
series of the form Σ︀∞ 𝑛=0 𝑎𝑛𝑛!, where 0 ⩽ 𝑎𝑛 ⩽ 𝑛, 𝑎𝑛 is an integer. Series of this type, converging in all fields of 𝑝–adic numbers, except for a finite number of them, having rational coefficients, are called almost polyadic numbers.
We shall assume that 𝜆𝑖 = 𝑎𝑖 𝑏𝑖 , 𝑖 = 1, . . . ,𝑚, where 𝑎𝑖, 𝑏𝑖 are positive integers, N.O.D. (𝑎𝑖, 𝑏𝑖) = 1, 𝑖 = 1, . . . ,𝑚 and 𝜆𝑖 − 𝜆𝑗 ̸∈ Z for 𝑖 ̸= 𝑗. It can be shown that under these conditions the series
Σ︀∞ 𝑛=0 (𝜆𝑖)𝑛(𝑏𝑖)𝑛𝑍𝑛, 𝑖 = 1, . . . ,𝑚 are algebraically independent over the field of rational functions of 𝑧 [1].
This implies the infinite algebraic independence of polyadic numbers Σ︀∞ 𝑛=0 (𝜆𝑖)𝑛(𝑏𝑖)𝑛, 𝑖 = 1, . . . ,𝑚 [2].
It can be assumed that the expansion digits of the partial sums
Σ︀𝑁 𝑛=0 (𝜆𝑖)𝑛(𝑏𝑖)𝑛, 𝑖 = 1, . . . ,𝑚 of the series under consideration have good statistical properties. The article describes the results
of the experiments conducted.

About the Author

Vladimir Yur’evich Matveev
Institute of Economics, Mathematics and IT of RANEPA
Russian Federation

candidate of physical and mathematical sciences



References

1. Matveev V.Yu. 2024, “Infinite algebraic independence of some almost polyadic numbers”, Chebyshevskii Sbornik 25(3) pp. 365–372.

2. Chirskii V.G. 2019, “Product formula global relations and polyadic integers”, Russian Journal of Mathematical Physics 26(3) pp. 286–305.

3. Chirskii V.G. 2020, “Arithmetic properties of generalized hypergeometric F-series”, Russian Journal of Mathematical Physics 27(2) pp. 175–184.

4. Chirskii V.G. 2014, “On arithmetic properties of generalized hypergeometric series with irrational parameters”, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 78(6) pp. 193–210.

5. Chirskii V.G. 2021, “Polyadic Liouville numbers”, Chebyshevskii Sbornik 22(3) pp. 245–255.

6. Chirskii V.G. 2022, “Arithmetic properties of the values of generalized hypergeometric series with polyadic transcendental parameters”, Doklady Akademii Nauk 506 pp. 95–107.

7. Chirskii V.G. 2023, “Transcendence of 𝑝-adic values of generalized hypergeometric series with transcendental polyadic parameters”, Doklady Akademii Nauk 510 pp. 29–32.

8. Chirskii V.G. 2023, “Transcendence of some 2-adic numbers”, Chebyshevskii Sbornik 24(5) pp. 194–200.

9. Yudenkova E.Yu. 2021, “Infinite linear and algebraic independence of the values of 𝐹-series at polyadic Liouville points”, Chebyshevskii Sbornik 22(2) pp. 334–346.

10. Matveev V.Yu. 2019, “Properties of elements of direct products of fields”, Chebyshevskii Sbornik 20(2) pp. 383–390.

11. Krupitsyn E.S. 2019, “Arithmetic properties of series of some classes”, Chebyshevskii Sbornik 20(2) pp. 374–382.

12. Chirskii V.G. 2024, “Infinite algebraic independence of polyadic series with periodic coefficients”, Doklady Rossiiskoi Akademii Nauk. Matematika Informatika Protsessy Upravleniya 519 pp. 16–19.

13. Chirskii V.G. 2023, “Transcendence of 𝑝-adic values of generalized hypergeometric series with transcendental polyadic parameters”, Doklady Rossiiskoi Akademii Nauk. Matematika Informatika Protsessy Upravleniya 510 pp. 29–32.

14. Knuth D.E. 2001, The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Moscow: Williams. 832 p. ISBN 5-8459-0081-6.

15. National Institute of Standards and Technology. 2010, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications NIST Special Publication 800-22Rev1a. Available at: https://doi.org/10.6028/NIST.SP.800-22r1a


Review

For citations:


Matveev V.Yu. An approach to constructing a sequence of pseudorandom numbers based on decompositions of polyadic numbers. Chebyshevskii Sbornik. 2025;26(4):454-460. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-454-460

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)