Topological invariants of pseudo-Euclidean Zhukovsky integrable
https://doi.org/10.22405/2226-8383-2025-26-4-224-239
Abstract
We study the pseudo-Euclidean analogue of the integrable Zhukovsky case for an axisymmetric body. Two essential parameters were found on the multidimensional parameter space, and the separating set was constructed. The bifurcation curve arrangement on the momentum map plane is explicitly described depending on parameter values. Fomenko invariants analogs for non-singular isoenergy and isointegral surfaces are computed. A visualization of the output of the algorithm for constructing labeled graphs for non-singular isoenergetic surfaces is given.
About the Authors
Ekaterina Sergeevna AgureevaRussian Federation
Vladislav Alexandrovich Kibkalo
Russian Federation
candidate of physical and mathematical sciences
Victor Alexandrovich Chertopolokhov
Russian Federation
candidate of physical and mathematical sciences
References
1. Fomenko, A. T. 1987, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., vol. 29, no. 3, pp. 629–658.
2. Fomenko, A. T. 1988, “Symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, vol. 44, no. 1, pp. 145–173.
3. Fomenko, A. T. & Zieschang, H. 1991, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., vol. 36, no. 3, pp. 567–596.
4. Bolsinov, A. V. & Fomenko, A. T. 2004, Integrable Hamiltonian systems: geometry, topology, classification, Chapman & Hall/CRC, Boca Raton, London, New York, Washington.
5. Vedyushkina (Fokicheva), V. V. & Fomenko, A. T. 2017, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., vol. 81, no. 4, pp. 688–733.
6. Fomenko, A. T. & Vedyushkina, V. V. 2023, “Billiards and integrable systems”, Russian Math. Surveys, vol. 78, no. 5, pp. 881–954.
7. Gavrilov, L. 1989, “Bifurcations of invariant manifolds in the generalized H´enon–Heiles system”, Physica D, vol. 34, no. 1–2, pp. 223–239.
8. Kudryavtseva, E. A. 2012, “An analogue of the Liouville theorem for integrable Hamiltonian systems with incomplete flows”, Doklady Mathematics, vol. 86, no. 1, pp. 527–529.
9. Aleshkin, K. R. 2014, “The topology of integrable systems with incomplete fields”, Sb. Math., vol. 205, no. 9, pp. 1264–1278.
10. Fedoseev, D. A. & Fomenko, A. T. 2020, “Noncompact Bifurcations of Integrable Dynamic Systems”, J. Math. Sc., vol. 248, pp. 810–827.
11. Novikov, D. V. 2011, “Topological features of the Sokolov integrable case on the Lie algebra”, Sb. Math., vol. 202, no. 5, pp. 749–781.
12. Novikov, D. V. 2014, “Topological features of the Sokolov integrable case on the Lie algebra so(3,1)”, Sb. Math., vol. 205, no. 8, pp. 1107–1132.
13. Borisov, A. V. & Mamaev, I. S. 2016, “Rigid body dynamics in non-Euclidean spaces”, Rus. J. of Math. Phys., vol. 23, no. 4, pp. 431–454.
14. Nikolaenko, S. S. 2020, “Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds”, Sb. Math., vol. 211, no. 8, pp. 1127–1158.
15. Nikolaenko, S. S. 2021, “Topological classification of non-compact 3-atoms with a circle action”, Chebyshevskii Sb., vol. 22, no. 5, pp. 185–197.
16. Zhukovsky, N. E. 1949, “On the motion of a rigid body containing cavities filled with a homogeneous droplet liquid”, Collected Works, vol. 2, pp. 152–309. (in Russian)
17. Sokolov, S. V. 2018, “The integrable case of Kovalevskaya in a non-Euclidean spase: separation of variables”, Trydi MAI, vol. 100, pp. 1–13.
18. Kibkalo, V. A. 2020, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow Univ. Math. Bull., vol. 75, no. 6, pp. 263–267.
19. Kibkalo, V. A. 2023, “First Appelrot class of the pseudo-Euclidean Kovalevskaya system”, Chebyshevskii Sb., vol. 24, no. 1, pp. 69–88.
20. Altuev, M. K. & Kibkalo, V. A. 2023, “Topological analysis of pseudo-Euclidean Euler top for special values of the parameters”, Sb. Math., vol. 214, no. 3, pp. 334–348.
21. Agureeva, E. A. & Kibkalo, V. A. 2024, “Topological Analysis of Axisymmetric Zhukovsky System in the Case of Lie Algebra e(2,1)”, Moscow Univ. Math. Bull., vol. 79, no. 5, pp. 207–222
22. Belousov, N. A. & Kibkalo, V. A. 2025, “Invariants of Pseudo-Euclidean Euler Top with Noncompact Leaves”, Moscow Univ. Math. Bull., vol. 80, no. 3, pp. 167–172.
Review
For citations:
Agureeva E.S., Kibkalo V.A., Chertopolokhov V.A. Topological invariants of pseudo-Euclidean Zhukovsky integrable. Chebyshevskii Sbornik. 2025;26(4):224-239. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-224-239






















