On Gauss and Jacobsthal congruences
https://doi.org/10.22405/2226-8383-2025-26-4-174-182
Abstract
This paper is devoted to extending the classical Wolstenholme congruence for the central binomial coefficient (︀2𝑝 𝑝 )︀ to the case of a composite number. An extension of Fermat’s little theorem to the composite case is the Gauss congruence, which has a simple combinatorialdynamic interpretation. To extend Wolstenholme’s congruence to the composite case, it is
necessary to use the Jacobsthal congruence. A combinatorial proof of its weakened version is given based on investigation of the orbit lenghts for a suitable action of Sylow 𝑝-subgroups
of the symmetric group.
About the Authors
Konstantin Igorevich PimenovRussian Federation
candidate of physical and mathematical sciences
Ildar Nikolaevich Faizov
Russian Federation
Igor Borisovich Zhukov
Russian Federation
doctor of physical and mathematical sciences
References
1. Almkvist, G. 1983, “Integrity of ghosts”, Preprint, Available at: https://arxiv.org/abs/math/0612443.
2. Arnold, V.I. 2004, “The Matrix Euler-Fermat theorem”, Izvestiya: Mathematics, 68(6), pp. 1119–1128.
3. Vinberg, E.B. 2008, “Fermat’s little theorem and generalizations”, Matematicheskoe Prosveshchenie, 12, pp. 43–54.
4. Zarelua, A.V. 2008, “On congruences for the traces of powers of some matrices”, Proceedings of the Steklov Institute of Mathematics, 263, pp. 78–98.
5. Trachtman, Yu.A. 1974, “On the divisibility of certain differences, formed from binomial coefficients”, Doklady Akademii Nauk Armyanskoi SSR, 59, pp. 10–16.
6. Byszewski, J., Graff, G., and Ward, T. 2021, “Dold sequences, periodic points, and dynamics”, Bulletin of the London Mathematical Society, 53, pp. 1263–1298.
7. Brun, V., Stubban, J.O., Fjeldstad, J.E., Tambs-Lyche, R., Aubert, K.E., Ljunggren, W., and Jacobsthal, E. 1952, “On the divisibility of the difference between two binomial coefficients”, in Den 11te Skandinaviske Matematikerkongress, Trondheim 1949, pp. 42–54.
8. Deligne, P. 2009, “Extended Euler congruence”, Functional Analysis and Other Mathematics, 2, pp. 249–250.
9. Jacobsthal, E. 1945, “Tallteoretiske egenskaper ved binominalkoeffisientene”, Norske Videnskabers Selskabs Skrifter (Trondheim), 4, pp. 1–28.
10. J¨anichen, W. 1921, “ ¨Uber die Verallgemeinerung einer Gaussschen Formel aus der Theorie der h¨oheren Kongruenzen”, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 20, pp. 23–29.
11. Ljunggren, W. 1942, “Eine Eigenschaft der mittleren Binomialkoeffizienten”, Norsk Matematisk Tidsskrift, 24, pp. 18–22.
12. Minton, G.T. 2014, “Linear recurrence sequences satisfying congruence conditions”, Proceedings of the American Mathematical Society, 142(7), pp. 2337–2352.
13. Schur, I. 1937, “Arithmetische Eigenschaften der Potenzsummen einer algebraischen Gleichung”, Compositio Mathematica, 272, pp. 432–444.
14. Sch¨onemann, T. 1846, “Grundz¨uge einer allgemeinen Theorie der h¨ohern Congruenzen, deren Modul eine reelle Primzahl ist”, Journal f¨ur die reine und angewandte Mathematik, 31, pp. 269–325.
15. Smith, J.H. 1993, “Combinatorial Congruences from p-subgroups of the Symmetric Group”, Graphs and Combinatorics, 9, pp. 293–304.
16. Smyth, C.J. 1986, “A coloring proof of a generalization of Fermat’s little theorem”, The American Mathematical Monthly, 93, pp. 469–471.
Review
For citations:
Pimenov K.I., Faizov I.N., Zhukov I.B. On Gauss and Jacobsthal congruences. Chebyshevskii Sbornik. 2025;26(4):174-182. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-174-182






















