Preview

Chebyshevskii Sbornik

Advanced search

Irreducible subgroups generated by root subgroups in the group SL(𝑛,𝐾)

https://doi.org/10.22405/2226-8383-2025-26-4-123-138

Abstract

In the present paper we give a new proof of the description of irreducible subgroups generated by root subgroups in special linear group SL(𝑛,𝐾). For the first time such a description was
appeared in J. McLaughlin’s work. His work was one of the first papers dedicated to study of the generations by long root unipotent subgroups in Chevalley groups. At the present time the geometry of long root subgroups is a well-established field. But it remains a lot of unsolved tasks about short root unipotent subgroups. In particular, the description of irreducible subgroups
generated by short root subgroups in exceptional Chevalley groups over arbitrary field is unknown. In our proof we consider the group SL(𝑛,𝐾) as the Chevalley group of type Aℓ. Thus
in our opinion it is possible to use the given approach for study of the irreducible subgroups generated by short root subgroups in Chevalley groups.

About the Authors

Maksim Andreevich Kandinskiy
Saint Petersburg State University
Russian Federation

postgraduate student



Vladimir Vicktorovich Nesterov
Saint Petersburg State University
Russian Federation

candidate of physical and mathematical sciences



References

1. Vavilov N. A. The geometry of long root subgroups in Chevalley groups, Vestnik Leningrad Univ. Math. 21 (1988), no. 1, 5–10.

2. Vavilov N. A. Subgroups of Chevalley groups that contain a maximal torus, Trudy Leningr. Mat. Obshch., 1 (1990), 64–109.

3. Vavilov N. A. Subgroups of split classical groups, Dr. Sci. Thesis, Leningrad State Univ., 1987.

4. P. (In Russian)

5. Zalesskii A. E. and Serezhkin V. N. Linear groups generated by transvections, Math. USSR-Izv., 10 (1976), no. 1.

6. Kondrat’ev A.S. Subgroups of finite Chevalley groups, Russian Math. Surveys, 41 (1986), no. 1, 65–118.

7. Nesterov V. V. Pairs of short root subgroups in Chevalley groups, Doklady Mathematics, 56 (1997), no. 3, 870–872.

8. Nesterov V. V. Pairs of Short Root Subgroups in the Chevalley Group of Type G2, J. Math. Sci. (N.Y.), 120 (2004), no. 4, 1630-1641.

9. Nesterov V. V., Generation of pairs of short root subgroups in Chevalley groups, St. Petersburg Math. J. 16 (2005), no. 6, 1051–1077.

10. Nesterov V. V. Subsystem subgroups of the group of type F4 generated by short root subgroups, St. Petersburg Math. J. 31 (2020), no. 1, 69–80.

11. Carter R. W. Simple groups of Lie type, Pure Appl. Math., 28, Wiley: London et al., 1972.

12. Cooperstein B. N. Subgroups of the group E6(𝑞) which are generated by root subgroups, J. Algebra, 46 (1977), 355–388.

13. Cooperstein B. N. The geometry of root subgroups in exceptional groups, Geometria dedicata, 8 (1977), no. 3, 317–381; II – 15 (1983), no. 1, 1–45.

14. Cooperstein B. N. Geometry of long root subgroups in groups of Lie type, Proc. Symp. Pure Math., 37 (1980), 243–248.

15. Kantor W. M. Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc., 248 (1979), no. 2, 347–379.

16. Li Shang Zhi Maximal subgroups containing root subgroups in finite classical groups, Kexue Tongbao, 29 (1984), no. 1, 14–18.

17. Li Shang Zhi Maximal subgroups in PΩ(𝑛, 𝐹,𝑄) with root subgroups, Sci. Sinica Ser. A, 28 (1985), no. 8, 826–838.

18. Li Shang Zhi Maximal subgroups containing short root subgroups in PSp(2𝑛, F), Acta Math. Sinica, New ser., 3 (1987), no. 1, 82–91.

19. Liebeck M. W., Seitz G. M. Subgroups generated by root elements in groups of Lie type, Ann. Math., 139 (1994), 293–361.

20. McLaughlin J. Some groups generated by transvections, Arch. Math., 18 (1967), N 4, 364–368.

21. Stark B. S. Some subgroups of Ω(𝑉 ) generated by groups of root type 1, Illinois J. Math., 17 (1973), no. 4, 584–607.

22. Stark B. S. Some subgroups of Ω(𝑉 ) generated by groups of root type, J. Algebra, 17 (1974), no. 1, 33–41.

23. Stark B. S. Irreducible subgroups of orthogonal groups generated by groups of root type 1, Pacific J. Math., 53 (1974), no. 2, 611–625.

24. Stewart D. I. The reductive subgroups of G2, J. Group Theory, 13 (2010), 117–130.

25. Stewart D. I. The reductive subgroups of F4, Mem. Amer. Math. Soc., 223 (2013), no. 1049.

26. Timmesfeld F. G. Groups generated by 𝑘-transvections, Invent. Math., 100 (1990), 167–206.

27. Timmesfeld F. G. Groups generated by 𝑘-root subgroups, Invent. Math., 106 (1991), 575–666.


Review

For citations:


Kandinskiy M.A., Nesterov V.V. Irreducible subgroups generated by root subgroups in the group SL(𝑛,𝐾). Chebyshevskii Sbornik. 2025;26(4):123-138. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-123-138

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)