On explicit constructions of extensions of complete fields
https://doi.org/10.22405/2226-8383-2025-26-4-108-122
Abstract
This article is devoted to the use of sequences of Artin-Schreier equations to defining 𝑝-Galois extensions of complete discrete valuation fields of mixed characteristic. Along with a review of
known results in this area, some new results for abelian 2-extensions are obtained. Furthermore, the study of almost maximally ramified extensions introduced by S. V. Vostokov in his study of additive Galois modules is continued. It is proved that if the Galois group of such an extension has period p, it is necessarily abelian.
About the Authors
Igor Borisovich ZhukovRussian Federation
doctor of physical and mathematical sciences, professor
Olga Yur’evna Ivanova
Russian Federation
candidate of physical and mathematical sciences
References
1. Bondarko, M.V., Vostokov, S.V., and Zhukov, I.B., 1998, “Additive Galois modules in complete
2. discretely valued fields”, St. Petersburg Math. J., 9(4), pp. 675-693.
3. Vostokov, S.V., 1974, “Ideals of abelian 𝑝-extension of irregular local field as Galois modules”,
4. Zapiski Nauchnykh Seminarov LOMI, 46, pp. 14–35.
5. Vostokov, S.V., 1976, “Ideals of abelian 𝑝-extension of local field as Galois modules”, J. Soviet
6. Math., 11(4), pp. 567–584.
7. Vostokov, S.V., and Zhukov, I.B., 1995, “Some approaches to the construction of abelian
8. extensions for p-adic fields”, Proceeding of the St. Peterburg Mathematical Society, III, pp.
9. –214.
10. Vostokov, S.V., Zhukov, I.B., and Ivanova, O.Y., 2019, “Inaba extensions of complete fields of
11. characteristic 0”, Chebyshevskii Sbornik, 20(3), pp. 124–133.
12. Vostokov, S.V., Zhukov, I.B., and Pak, G.K., 1999, “Extensions with almost maximal
13. ramification depth”, J. Math. Sci, 112(3), pp. 4285–43022.
14. Vostokov, S.V., Zhukov, I.B., and Fesenko, I.B., 1991, “On the theory of multidimensional local
15. fields. Methods and constructions”, Leningrad Math. J., 2(4), pp. 775–800.
16. Zhukov, I.B., and Lysenko, E.F., 2018, “Construction of a cyclic extension of degree 𝑝2 for a
17. complete field”, J. Math. Sci., 234(2), pp. 148-157.
18. Zhukov, I.B., and Ivanova, O.Y., 2025, “On the Inaba extensions of two-dimensional local fields
19. of mixed characteristic”, J. Math. Sci., 288, pp. 305–316.
20. Zhukov, I.B., and Ivanova, O.Y., 2023, “Explicit constructions of extensions of complete fields
21. of characteristic 0”, Chebyshevskii Sbornik, 24(2), pp. 179–196.
22. Zhukov, I.B., and Ivanova, O.Y., 2024, “Elimination of maximal jumps”, Chebyshevskii Sbornik,
23. (1), pp. 176–183.
24. Ivanova, O.Y., 2025, “Construction of cyclic ferocious extensions by the Inaba equation”, J.
25. Math. Sci., 288, pp. 317–324.
26. Iwasawa, K., 1986, Local Class Field Theory, Oxford University Press, 155 p.
27. Cassels, J.W.S., and Fr¨ohlich, A. (eds), 1967, Algebraic Number Theory, London: Academic
28. Press, 366 p.
29. Fesenko, I.B., and Vostokov, S.V., 2002, Local Fields and Their Extensions: A Constructive
30. Approach, 2nd ed., Providence: American Mathematical Society, 172 p.
31. Hyodo, O., 1987, “Wild ramification in the imperfect residue field case”, in Galois Representations
32. and Arithmetic Algebraic Geometry, Amsterdam: North-Holland, pp. 287–314.
33. Inaba, E., 1961, “On matrix equations for Galois extensions of fields with characteristic p”,
34. Natural Science Report of the Ochanomizu University, 12, pp. 26–36.
35. Lubin, J., and Tate, J., 1965, “Formal complex multiplication in local fields”, Annals of
36. Mathematics, 81, pp. 380–387.
37. MacKenzie, R.E., and Whaples, G., 1956, “Artin–Schreier equations in characteristic zero”,
38. American Journal of Mathematics, 78, pp. 473–485.
39. Serre, J.-P., 1979, Local Fields, Springer, 241 p.
40. Xiao, L., and Zhukov, I., 2015, “Ramification in the imperfect residue field case, approaches
41. and questions”, St. Petersburg Math. J., 26(5), pp. 695–740.
42. Xiao, L., and Zhukov, I., 2014, “Ramification in the imperfect residue field case, approaches and
43. questions”, in Valuation Theory in Interaction: Proceedings of the 2nd International Conference
44. and Workshop on Valuation Theory, Z¨urich: European Mathematical Society, pp. 600–656.
45. Zhukov, I., 2000, “Explicit abelian extensions of complete discrete valuation fields”, in Invitation
46. to Higher Local Fields, edited by Fesenko, I., and Kurihara, M., Geometry and Topology
47. Monographs, 3, pp. 117–122.
Review
For citations:
Zhukov I.B., Ivanova O.Yu. On explicit constructions of extensions of complete fields. Chebyshevskii Sbornik. 2025;26(4):108-122. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-108-122






















