Preview

Chebyshevskii Sbornik

Advanced search

On explicit constructions of extensions of complete fields

https://doi.org/10.22405/2226-8383-2025-26-4-108-122

Abstract

This article is devoted to the use of sequences of Artin-Schreier equations to defining 𝑝-Galois extensions of complete discrete valuation fields of mixed characteristic. Along with a review of
known results in this area, some new results for abelian 2-extensions are obtained. Furthermore, the study of almost maximally ramified extensions introduced by S. V. Vostokov in his study of additive Galois modules is continued. It is proved that if the Galois group of such an extension has period p, it is necessarily abelian.

About the Authors

Igor Borisovich Zhukov
Saint Petersburg State University
Russian Federation

doctor of physical and mathematical sciences, professor



Olga Yur’evna Ivanova
Saint Petersburg State University
Russian Federation

candidate of physical and mathematical sciences



References

1. Bondarko, M.V., Vostokov, S.V., and Zhukov, I.B., 1998, “Additive Galois modules in complete

2. discretely valued fields”, St. Petersburg Math. J., 9(4), pp. 675-693.

3. Vostokov, S.V., 1974, “Ideals of abelian 𝑝-extension of irregular local field as Galois modules”,

4. Zapiski Nauchnykh Seminarov LOMI, 46, pp. 14–35.

5. Vostokov, S.V., 1976, “Ideals of abelian 𝑝-extension of local field as Galois modules”, J. Soviet

6. Math., 11(4), pp. 567–584.

7. Vostokov, S.V., and Zhukov, I.B., 1995, “Some approaches to the construction of abelian

8. extensions for p-adic fields”, Proceeding of the St. Peterburg Mathematical Society, III, pp.

9. –214.

10. Vostokov, S.V., Zhukov, I.B., and Ivanova, O.Y., 2019, “Inaba extensions of complete fields of

11. characteristic 0”, Chebyshevskii Sbornik, 20(3), pp. 124–133.

12. Vostokov, S.V., Zhukov, I.B., and Pak, G.K., 1999, “Extensions with almost maximal

13. ramification depth”, J. Math. Sci, 112(3), pp. 4285–43022.

14. Vostokov, S.V., Zhukov, I.B., and Fesenko, I.B., 1991, “On the theory of multidimensional local

15. fields. Methods and constructions”, Leningrad Math. J., 2(4), pp. 775–800.

16. Zhukov, I.B., and Lysenko, E.F., 2018, “Construction of a cyclic extension of degree 𝑝2 for a

17. complete field”, J. Math. Sci., 234(2), pp. 148-157.

18. Zhukov, I.B., and Ivanova, O.Y., 2025, “On the Inaba extensions of two-dimensional local fields

19. of mixed characteristic”, J. Math. Sci., 288, pp. 305–316.

20. Zhukov, I.B., and Ivanova, O.Y., 2023, “Explicit constructions of extensions of complete fields

21. of characteristic 0”, Chebyshevskii Sbornik, 24(2), pp. 179–196.

22. Zhukov, I.B., and Ivanova, O.Y., 2024, “Elimination of maximal jumps”, Chebyshevskii Sbornik,

23. (1), pp. 176–183.

24. Ivanova, O.Y., 2025, “Construction of cyclic ferocious extensions by the Inaba equation”, J.

25. Math. Sci., 288, pp. 317–324.

26. Iwasawa, K., 1986, Local Class Field Theory, Oxford University Press, 155 p.

27. Cassels, J.W.S., and Fr¨ohlich, A. (eds), 1967, Algebraic Number Theory, London: Academic

28. Press, 366 p.

29. Fesenko, I.B., and Vostokov, S.V., 2002, Local Fields and Their Extensions: A Constructive

30. Approach, 2nd ed., Providence: American Mathematical Society, 172 p.

31. Hyodo, O., 1987, “Wild ramification in the imperfect residue field case”, in Galois Representations

32. and Arithmetic Algebraic Geometry, Amsterdam: North-Holland, pp. 287–314.

33. Inaba, E., 1961, “On matrix equations for Galois extensions of fields with characteristic p”,

34. Natural Science Report of the Ochanomizu University, 12, pp. 26–36.

35. Lubin, J., and Tate, J., 1965, “Formal complex multiplication in local fields”, Annals of

36. Mathematics, 81, pp. 380–387.

37. MacKenzie, R.E., and Whaples, G., 1956, “Artin–Schreier equations in characteristic zero”,

38. American Journal of Mathematics, 78, pp. 473–485.

39. Serre, J.-P., 1979, Local Fields, Springer, 241 p.

40. Xiao, L., and Zhukov, I., 2015, “Ramification in the imperfect residue field case, approaches

41. and questions”, St. Petersburg Math. J., 26(5), pp. 695–740.

42. Xiao, L., and Zhukov, I., 2014, “Ramification in the imperfect residue field case, approaches and

43. questions”, in Valuation Theory in Interaction: Proceedings of the 2nd International Conference

44. and Workshop on Valuation Theory, Z¨urich: European Mathematical Society, pp. 600–656.

45. Zhukov, I., 2000, “Explicit abelian extensions of complete discrete valuation fields”, in Invitation

46. to Higher Local Fields, edited by Fesenko, I., and Kurihara, M., Geometry and Topology

47. Monographs, 3, pp. 117–122.


Review

For citations:


Zhukov I.B., Ivanova O.Yu. On explicit constructions of extensions of complete fields. Chebyshevskii Sbornik. 2025;26(4):108-122. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-108-122

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)